These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 8867305)

  • 1. [Ca(2+)-phospholipid-dependent protein kinases and their role in regulating metabolic processes].
    Ostapchenko LI
    Ukr Biokhim Zh (1978); 1995; 67(6):3-11. PubMed ID: 8867305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. I. Characterization of a calcium-activated, phospholipid-dependent protein kinase.
    Ogawa Y; Takai Y; Kawahara Y; Kimura S; Nishizuka Y
    J Immunol; 1981 Oct; 127(4):1369-74. PubMed ID: 7276562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-activated, phospholipid-dependent protein kinase in smooth muscle and its possible relation to phosphatidylinositol turnover.
    Yu B
    Kobe J Med Sci; 1981 Dec; 27(6):225-37. PubMed ID: 7321488
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on Ca2+-activated, phospholipid-dependent protein kinase; isolation and characterization of a catalytically active fragment.
    Kishimoto A
    Kobe J Med Sci; 1980 Sep; 26(3):183-206. PubMed ID: 7218739
    [No Abstract]   [Full Text] [Related]  

  • 5. Membrane phospholipid metabolism and signal transduction for protein phosphorylation.
    Takai Y; Kikkawa U; Kaibuchi K; Nishizuka Y
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 18():119-58. PubMed ID: 6093478
    [No Abstract]   [Full Text] [Related]  

  • 6. Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipid.
    Helfman DM; Barnes KC; Kinkade JM; Vogler WR; Shoji M; Kuo JF
    Cancer Res; 1983 Jun; 43(6):2955-61. PubMed ID: 6850605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Ca2+/phospholipid dependent protein kinase from suspension cultures of lucerne.
    Robinson P; Newton RP; Walton TJ; Smith CJ
    Biochem Soc Trans; 1994 Aug; 22(3):307S. PubMed ID: 7821566
    [No Abstract]   [Full Text] [Related]  

  • 8. [Plant protein kinases stimulated by calcium].
    Jaworski K; Szmidt-Jaworska A; Kopcewicz J
    Postepy Biochem; 2005; 51(2):188-97. PubMed ID: 16209356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and functions of plant calcium-dependent protein kinases.
    Klimecka M; Muszyńska G
    Acta Biochim Pol; 2007; 54(2):219-33. PubMed ID: 17446936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA receptors as a possible component of store-operated Ca²⁺ entry in human T-lymphocytes.
    Zainullina LF; Yamidanov RS; Vakhitov VA; Vakhitova YV
    Biochemistry (Mosc); 2011 Nov; 76(11):1220-6. PubMed ID: 22117548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Calcium transport and role of 3',5'-AMP-dependent phosphorylation in its relation].
    Kurskiĭ MD
    Ukr Biokhim Zh (1978); 1981; 53(2):71-86. PubMed ID: 6114584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AGCVIII kinases: at the crossroads of cellular signaling.
    Zhang Y; McCormick S
    Trends Plant Sci; 2009 Dec; 14(12):689-95. PubMed ID: 19818674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of contractile activity in vascular smooth muscle by protein kinases.
    Silver PJ
    Rev Clin Basic Pharm; 1985; 5(3-4):341-95. PubMed ID: 3029813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium ion and phospholipid-dependent protein kinase in rod outer segment.
    Inoue M; Isayama Y
    Jpn J Ophthalmol; 1984; 28(1):47-56. PubMed ID: 6235388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Purinergic receptor activation and phospholipid-Ca signal transduction systems].
    Kondo Y
    Tanpakushitsu Kakusan Koso; 1991 Feb; 36(3):240-50. PubMed ID: 1850854
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphatidylinositol turnover in receptor mechanism and signal transduction.
    Hirasawa K; Nishizuka Y
    Annu Rev Pharmacol Toxicol; 1985; 25():147-70. PubMed ID: 2988417
    [No Abstract]   [Full Text] [Related]  

  • 17. [Protein kinases of the central nervous system in ontogenesis].
    Sanecka-Obacz M
    Postepy Biochem; 1989; 35(3):347-62. PubMed ID: 2517901
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium-activated, phospholipid-dependent protein kinase (protein kinase C): general aspects and experimental considerations.
    Boneh A; Tenenhouse HS
    Isr J Med Sci; 1990 May; 26(5):293-300. PubMed ID: 2199407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. II. Possible relation to phosphatidylinositol turnover induced by mitogens.
    Ku Y; Kishimoto A; Takai Y; Ogawa Y; Kimura S; Nishizuka Y
    J Immunol; 1981 Oct; 127(4):1375-9. PubMed ID: 7276563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid and Ca++ dependency of phorbol ester receptors.
    König B; Di Nitto PA; Blumberg PM
    J Cell Biochem; 1985; 27(3):255-65. PubMed ID: 3157693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.