These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8867332)

  • 1. Fluorescence emission and anisotropy from rhodamine dimers.
    Burghardt TP; Lyke JE; Ajtai K
    Biophys Chem; 1996 Mar; 59(1-2):119-31. PubMed ID: 8867332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization properties of fluorescent BSA protected Au25 nanoclusters.
    Raut S; Chib R; Rich R; Shumilov D; Gryczynski Z; Gryczynski I
    Nanoscale; 2013 Apr; 5(8):3441-6. PubMed ID: 23474596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules.
    Geng H; Zhang XF
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():13-9. PubMed ID: 25546492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies.
    Phelps MA; Foraker AB; Gao W; Dalton JT; Swaan PW
    Mol Pharm; 2004; 1(4):257-66. PubMed ID: 15981585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregate formation of Rhodamine 6G in anisotropic solvents.
    Gilani AG; Sariri R; Bahrpaima K
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Jan; 57(1):155-61. PubMed ID: 11209857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards.
    Würth C; González MG; Niessner R; Panne U; Haisch C; Genger UR
    Talanta; 2012 Feb; 90():30-7. PubMed ID: 22340112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved fluorescence spectroscopic and scanning near-field optical microscopic studies of rhodamine dye adsorbed in cationic Langmuir-Blodgett films.
    Ray K; Nakahara H; Sakamoto A
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):103-7. PubMed ID: 15556427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on sodium lauryl sulfate (SDS) induced fluorescence enhancement of rhodamine 6G in water solution excited by 532 nm laser].
    He YH; Cheng J; Zuo HY; Yang JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 May; 25(5):648-50. PubMed ID: 16128053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
    Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties and application of a reactive and bioreducible thiol-containing tetramethylrhodamine dimer.
    Christie RJ; Tadiello CJ; Chamberlain LM; Grainger DW
    Bioconjug Chem; 2009 Mar; 20(3):476-80. PubMed ID: 19249862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B.
    Zhang XF; Zhang J; Lu X
    J Fluoresc; 2015 Jul; 25(4):1151-8. PubMed ID: 26162989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase.
    Fikry M; Omar MM; Ismail LZ
    J Fluoresc; 2009 Jul; 19(4):741-6. PubMed ID: 19221868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: rhodamine B, coumarin 6 and lucifer yellow.
    Kristoffersen AS; Erga SR; Hamre B; Frette Ø
    J Fluoresc; 2014 Jul; 24(4):1015-24. PubMed ID: 24866152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites.
    Vogel R; Meredith P; Harvey MD; Rubinsztein-Dunlop H
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jan; 60(1-2):245-9. PubMed ID: 14670484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors.
    Zheng H; Zhan XQ; Bian QN; Zhang XJ
    Chem Commun (Camb); 2013 Jan; 49(5):429-47. PubMed ID: 23164947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and dissociation of rhodamine 800 dimers in water: steady-state and ultrafast spectroscopic study.
    Sekiguchi K; Yamaguchi S; Tahara T
    J Phys Chem A; 2006 Mar; 110(8):2601-6. PubMed ID: 16494368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical characterization of interchromophoric interactions between rhodamine dyes conjugated to proteins.
    Donaphon B; Bloom LB; Levitus M
    Methods Appl Fluoresc; 2018 Jul; 6(4):045004. PubMed ID: 29985159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound-modulated fluorescence from rhodamine B aqueous solution.
    Yuan B; Liu Y
    J Biomed Opt; 2010; 15(2):021321. PubMed ID: 20459241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and photophysical properties of dUTP and internally DNA bound fluorophores for optimized signal detection in biological formats.
    Linck L; Kapusta P; Resch-Genger U
    Photochem Photobiol; 2012; 88(4):867-75. PubMed ID: 22360746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.