These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8867337)

  • 21. Density of states, metastable states, and saddle points exploring the energy landscape of an RNA molecule.
    Cupal J; Flamm C; Renner A; Stadler PF
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():88-91. PubMed ID: 9322020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA structures with pseudo-knots: graph-theoretical, combinatorial, and statistical properties.
    Haslinger C; Stadler PF
    Bull Math Biol; 1999 May; 61(3):437-67. PubMed ID: 17883226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Pseudoknotted RNA Secondary Structures by Topological Centroid Identification and Tree Edit Distance.
    Wang F; Akutsu T; Mori T
    J Comput Biol; 2020 Sep; 27(9):1443-1451. PubMed ID: 32058802
    [No Abstract]   [Full Text] [Related]  

  • 24. Prediction of common folding structures of homologous RNAs.
    Han K; Kim HJ
    Nucleic Acids Res; 1993 Mar; 21(5):1251-7. PubMed ID: 7681944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The topological filtration of γ-structures.
    Li TJ; Reidys CM
    Math Biosci; 2013 Jan; 241(1):24-33. PubMed ID: 23022027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Candidates for novel RNA topologies.
    Kim N; Shiffeldrim N; Gan HH; Schlick T
    J Mol Biol; 2004 Aug; 341(5):1129-44. PubMed ID: 15321711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topological classification of RNA structures.
    Bon M; Vernizzi G; Orland H; Zee A
    J Mol Biol; 2008 Jun; 379(4):900-11. PubMed ID: 18485361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of common secondary structures of RNAs: a genetic algorithm approach.
    Chen JH; Le SY; Maizel JV
    Nucleic Acids Res; 2000 Feb; 28(4):991-9. PubMed ID: 10648793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments.
    Tabei Y; Tsuda K; Kin T; Asai K
    Bioinformatics; 2006 Jul; 22(14):1723-9. PubMed ID: 16690634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mining frequent stem patterns from unaligned RNA sequences.
    Hamada M; Tsuda K; Kudo T; Kin T; Asai K
    Bioinformatics; 2006 Oct; 22(20):2480-7. PubMed ID: 16908501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An algorithm for searching RNA motifs in genomic sequences.
    Liu J; Ma B; Zhang K
    Biomol Eng; 2007 Sep; 24(3):343-50. PubMed ID: 17482512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method to predict the consensus secondary structure of a set of unaligned RNA sequences.
    Bouthinon D; Soldano H
    Bioinformatics; 1999 Oct; 15(10):785-98. PubMed ID: 10705432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the conformational energy landscape of human snRNA with a metric based on tree representation of RNA structures.
    Kitagawa J; Futamura Y; Yamamoto K
    Nucleic Acids Res; 2003 Apr; 31(7):2006-13. PubMed ID: 12655018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alignment editing and identification of consensus secondary structures for nucleic acid sequences: interactive use of dot matrix representations.
    Davis JP; Janjić N; Pribnow D; Zichi DA
    Nucleic Acids Res; 1995 Nov; 23(21):4471-9. PubMed ID: 7501472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explicit distance geometry: identification of all the degrees of freedom in a large RNA molecule.
    Hadwiger MA; Fox GE
    J Biomol Struct Dyn; 1991 Feb; 8(4):759-79. PubMed ID: 1711857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The computer simulation of RNA folding pathways using a genetic algorithm.
    Gultyaev AP; van Batenburg FH; Pleij CW
    J Mol Biol; 1995 Jun; 250(1):37-51. PubMed ID: 7541471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate Classification of RNA Structures Using Topological Fingerprints.
    Huang J; Li K; Gribskov M
    PLoS One; 2016; 11(10):e0164726. PubMed ID: 27755571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 3D graphical representation of RNA secondary structures.
    Liao B; Wang TM
    J Biomol Struct Dyn; 2004 Jun; 21(6):827-32. PubMed ID: 15107004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic competition between alternative structures in viroid RNAs simulated by an RNA folding algorithm.
    Gultyaev AP; van Batenburg FH; Pleij CW
    J Mol Biol; 1998 Feb; 276(1):43-55. PubMed ID: 9514713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.