These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8867889)

  • 1. Correlation of the OSR/ZRCI gene product and the intracellular glutathione levels in Saccharomyces cerevisiae.
    Kobayashi S; Miyabe S; Izawa S; Inoue Y; Kimura A
    Biotechnol Appl Biochem; 1996 Feb; 23(1):3-6. PubMed ID: 8867889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism.
    Matiach A; Schröder-Köhne S
    Mol Genet Genomics; 2001 Nov; 266(3):481-96. PubMed ID: 11713678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence of the GDS1 gene of Saccharomyces cerevisiae.
    Konopinska A; Szczesniak B; Boguta M
    Yeast; 1995 Dec; 11(15):1513-8. PubMed ID: 8750239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation.
    Grant CM; Collinson LP; Roe JH; Dawes IW
    Mol Microbiol; 1996 Jul; 21(1):171-9. PubMed ID: 8843443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar compartmentation of the cadmium-glutathione complex protects Saccharomyces cerevisiae from mutagenesis.
    Adamis PD; Panek AD; Eleutherio EC
    Toxicol Lett; 2007 Aug; 173(1):1-7. PubMed ID: 17644279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae.
    Shiraishi E; Inouhe M; Joho M; Tohoyama H
    Curr Genet; 2000 Feb; 37(2):79-86. PubMed ID: 10743563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.
    Barreto L; Garcerá A; Jansson K; Sunnerhagen P; Herrero E
    Eukaryot Cell; 2006 Oct; 5(10):1748-59. PubMed ID: 16936141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione, but not transcription factor Yap1, is required for carbon source-dependent resistance to oxidative stress in Saccharomyces cerevisiae.
    Maris AF; Kern AL; Picada JN; Boccardi F; Brendel M; Henriques JA
    Curr Genet; 2000 Mar; 37(3):175-82. PubMed ID: 10794174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae.
    Basu U; Southron JL; Stephens JL; Taylor GJ
    Mol Genet Genomics; 2004 Jun; 271(5):627-37. PubMed ID: 15133656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidative stress-sensitive yap1 null strain of Saccharomyces cerevisiae becomes resistant due to increased carotenoid levels upon the introduction of the Chlamydomonas reinhardtii cDNA, coding for the 60S ribosomal protein L10a.
    Méndez-Alvarez S; Rüfenacht K; Eggen RI
    Biochem Biophys Res Commun; 2000 Jan; 267(3):953-9. PubMed ID: 10673398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae.
    Conklin DS; Culbertson MR; Kung C
    Mol Gen Genet; 1994 Aug; 244(3):303-11. PubMed ID: 8058041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae.
    Miyabe S; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2000 Oct; 276(3):879-84. PubMed ID: 11027563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA sequence of a 762 bp fragment containing the SUP11-1 gene.
    Theis JF; Newlon CS
    Yeast; 1992 Mar; 8(3):223-5. PubMed ID: 1574928
    [No Abstract]   [Full Text] [Related]  

  • 15. ROD1, a novel gene conferring multiple resistance phenotypes in Saccharomyces cerevisiae.
    Wu AL; Hallstrom TC; Moye-Rowley WS
    J Biol Chem; 1996 Feb; 271(6):2914-20. PubMed ID: 8621680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae.
    Conklin DS; McMaster JA; Culbertson MR; Kung C
    Mol Cell Biol; 1992 Sep; 12(9):3678-88. PubMed ID: 1508175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity to Sn2+ of the yeast Saccharomyces cerevisiae depends on general energy metabolism, metal transport, anti-oxidative defences, and DNA repair.
    Viau C; Pungartnik C; Schmitt MC; Basso TS; Henriques JA; Brendel M
    Biometals; 2006 Dec; 19(6):705-14. PubMed ID: 16691319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of the SNQ3/YAP1 gene confers hyper-resistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione-independent mechanism.
    Grey M; Brendel M
    Curr Genet; 1994 May; 25(5):469-71. PubMed ID: 8082194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new antioxidant with alkyl hydroperoxide defense properties in yeast.
    Lee J; Spector D; Godon C; Labarre J; Toledano MB
    J Biol Chem; 1999 Feb; 274(8):4537-44. PubMed ID: 9988687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence of the sup61-RAD18 region on chromosome III of Saccharomyces cerevisiae.
    Benit P; Chanet R; Fabre F; Faye G; Fukuhara H; Sor F
    Yeast; 1992 Feb; 8(2):147-53. PubMed ID: 1561837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.