These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8868047)

  • 1. Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array.
    Obaid AL; Salzberg BM
    J Gen Physiol; 1996 Mar; 107(3):353-68. PubMed ID: 8868047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes.
    Obaid AL; Flores R; Salzberg BM
    J Gen Physiol; 1989 Apr; 93(4):715-29. PubMed ID: 2471780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring intrinsic optical signals from Mammalian nerve terminals.
    Salzberg BM; Muschol M; Kosterin P; Obaid AL
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis.
    Salzberg BM; Obaid AL; Gainer H
    J Gen Physiol; 1985 Sep; 86(3):395-411. PubMed ID: 2997364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike and Neuropeptide-Dependent Mechanisms Control GnRH Neuron Nerve Terminal Ca
    Iremonger KJ; Porteous R; Herbison AE
    J Neurosci; 2017 Mar; 37(12):3342-3351. PubMed ID: 28235895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components.
    Salzberg BM; Obaid AL; Senseman DM; Gainer H
    Nature; 1983 Nov 3-9; 306(5938):36-40. PubMed ID: 6633657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane excitability and secretion from peptidergic nerve terminals.
    Branchaw JL; Hsu SF; Jackson MB
    Cell Mol Neurobiol; 1998 Feb; 18(1):45-63. PubMed ID: 9524729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical studies of the secretory event at vertebrate nerve terminals.
    Salzberg BM; Obaid AL
    J Exp Biol; 1988 Sep; 139():195-231. PubMed ID: 2850336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological characterization of peptidergic neurosecretory terminals.
    Cooke IM
    J Exp Biol; 1985 Sep; 118():1-35. PubMed ID: 4093756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Subcellular localization of calcium in the neurosecretory axon terminals of the neurohypophysis of the rat following stimulation by administration of hypertonic salt solution].
    Karcsú S; Tóth L; László FA; Jancsó G; Bácsy E
    Acta Histochem; 1983; 73(1):1-8. PubMed ID: 6416001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain.
    Vígh B; Manzano e Silva MJ; Frank CL; Vincze C; Czirok SJ; Szabó A; Lukáts A; Szél A
    Histol Histopathol; 2004 Apr; 19(2):607-28. PubMed ID: 15024719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic innervation of the hypothalamic median eminence and posterior pituitary of the rat.
    Hrabovszky E; Deli L; Turi GF; Kalló I; Liposits Z
    Neuroscience; 2007 Feb; 144(4):1383-92. PubMed ID: 17175111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous adenosine inhibits CNS terminal Ca(2+) currents and exocytosis.
    Knott TK; Marrero HG; Fenton RA; Custer EE; Dobson JG; Lemos JR
    J Cell Physiol; 2007 Feb; 210(2):309-14. PubMed ID: 17096366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.
    Jackson MB; Konnerth A; Augustine GJ
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):380-4. PubMed ID: 1988937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical studies of excitation and secretion at vertebrate nerve terminals.
    Salzberg BM; Obaid AL; Gainer H
    Soc Gen Physiol Ser; 1986; 40():133-64. PubMed ID: 2424093
    [No Abstract]   [Full Text] [Related]  

  • 16. Optimizing release from peptide hormone secretory nerve terminals.
    Bicknell RJ
    J Exp Biol; 1988 Sep; 139():51-65. PubMed ID: 2850339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plasticizer released from IV drip chambers elevates calcium levels in neurosecretory terminals.
    Tully K; Kupfer D; Dopico AM; Treistman SN
    Toxicol Appl Pharmacol; 2000 Nov; 168(3):183-8. PubMed ID: 11042090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis.
    Obaid AL; Orkand RK; Gainer H; Salzberg BM
    J Gen Physiol; 1985 Apr; 85(4):481-9. PubMed ID: 2409215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microglia in the neurohypophysis associate with and endocytose terminal portions of neurosecretory neurons.
    Pow DV; Perry VH; Morris JF; Gordon S
    Neuroscience; 1989; 33(3):567-78. PubMed ID: 2636710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion.
    Muschol M; Salzberg BM
    J Neurosci; 2000 Sep; 20(18):6773-80. PubMed ID: 10995820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.