These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8868232)

  • 1. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure.
    Wrenn BA; Venosa AD
    Can J Microbiol; 1996 Mar; 42(3):252-8. PubMed ID: 8868232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure.
    Haines JR; Wrenn BA; Holder EL; Strohmeier KL; Herrington RT; Venosa AD
    J Ind Microbiol; 1996 Jan; 16(1):36-41. PubMed ID: 8820018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential.
    Jiménez N; Viñas M; Guiu-Aragonés C; Bayona JM; Albaigés J; Solanas AM
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):823-34. PubMed ID: 21562979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill.
    Dombrowski N; Donaho JA; Gutierrez T; Seitz KW; Teske AP; Baker BJ
    Nat Microbiol; 2016 May; 1(7):16057. PubMed ID: 27572965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microplate MPN-enumeration of monocyclic- and dicyclic-aromatic hydrocarbon degraders via substrate phase-partitioning.
    Johnsen AR; Henriksen S
    Biodegradation; 2009 Jul; 20(4):581-9. PubMed ID: 19043785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1.
    Johnsen AR; Bendixen K; Karlson U
    Appl Environ Microbiol; 2002 Jun; 68(6):2683-9. PubMed ID: 12039720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.
    Wu M; Li W; Dick WA; Ye X; Chen K; Kost D; Chen L
    Chemosphere; 2017 Feb; 169():124-130. PubMed ID: 27870933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method.
    Mills AL; Breuil C; Colwell RR
    Can J Microbiol; 1978 May; 24(5):522-7. PubMed ID: 350362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose and plant exudate enhanced enumeration of bacteria capable of degrading polycyclic aromatic hydrocarbons.
    Thomas JC; Dabkowski RT
    Can J Microbiol; 2011 Dec; 57(12):1067-72. PubMed ID: 22136124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms.
    Techtmann SM; Zhuang M; Campo P; Holder E; Elk M; Hazen TC; Conmy R; Santo Domingo JW
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and simple method for the most-probable-number estimation of arsenic-reducing bacteria.
    Kuai L; Nair AA; Polz MF
    Appl Environ Microbiol; 2001 Jul; 67(7):3168-73. PubMed ID: 11425737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.
    Ali N; Eliyas M; Al-Sarawi H; Radwan SS
    Chemosphere; 2011 May; 83(9):1268-72. PubMed ID: 21507457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of small-scale variation in the size and composition of phenanthrene-degrader populations and PAH contaminants in traffic-impacted topsoil.
    Johnsen AR; Styrishave B; Aamand J
    FEMS Microbiol Ecol; 2014 Apr; 88(1):84-93. PubMed ID: 24344982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.
    Kronenberg M; Trably E; Bernet N; Patureau D
    Environ Pollut; 2017 Dec; 231(Pt 1):509-523. PubMed ID: 28841503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization.
    Vila J; María Nieto J; Mertens J; Springael D; Grifoll M
    FEMS Microbiol Ecol; 2010 Aug; 73(2):349-62. PubMed ID: 20528986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.
    Wallenius K; Lappi K; Mikkonen A; Wickström A; Vaalama A; Lehtinen T; Suominen L
    Biodegradation; 2012 Feb; 23(1):47-55. PubMed ID: 21626282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts.
    Margesin R; Gander S; Zacke G; Gounot AM; Schinner F
    Extremophiles; 2003 Dec; 7(6):451-8. PubMed ID: 12942349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbon utilization within a diesel-degrading bacterial consortium.
    Ciric L; Philp JC; Whiteley AS
    FEMS Microbiol Lett; 2010 Feb; 303(2):116-22. PubMed ID: 20030730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete genome of Zhongshania aliphaticivorans SM-2(T), an aliphatic hydrocarbon-degrading bacterium isolated from tidal flat sediment.
    Jia B; Jeong HI; Kim KH; Jeon CO
    J Biotechnol; 2016 May; 226():22-3. PubMed ID: 27034022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.