BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8868237)

  • 21. Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments.
    Molina M; Araujo R; Hodson RE
    Can J Microbiol; 1999 Jun; 45(6):520-9. PubMed ID: 10453479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid.
    van Herwijnen R; Springael D; Slot P; Govers HA; Parsons JR
    Appl Environ Microbiol; 2003 Jan; 69(1):186-90. PubMed ID: 12513994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hard Cap Espresso Machines in Analytical Chemistry: What Else?
    Armenta S; de la Guardia M; Esteve-Turrillas FA
    Anal Chem; 2016 Jun; 88(12):6570-6. PubMed ID: 27224000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peculiarities of metabolism of anthracene and pyrene by laccase-producing fungus Pycnoporus sanguineus H1.
    Li X; Wang Y; Wu S; Qiu L; Gu L; Li J; Zhang B; Zhong W
    Biotechnol Appl Biochem; 2014; 61(5):549-54. PubMed ID: 24372644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Fluorene cometabolism by Rhodococcus rhodochrous and Pseudomonas fluorescens].
    Baboshin MA; Finkel'shteĭn ZI; Golovleva LA
    Mikrobiologiia; 2003; 72(2):194-8. PubMed ID: 12751243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment.
    Dean-Ross D; Moody J; Cerniglia CE
    FEMS Microbiol Ecol; 2002 Jul; 41(1):1-7. PubMed ID: 19709233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anthracene biodegradation capacity of newly isolated rhizospheric bacteria Bacillus cereus S13.
    Bibi N; Hamayun M; Khan SA; Iqbal A; Islam B; Shah F; Khan MA; Lee IJ
    PLoS One; 2018; 13(8):e0201620. PubMed ID: 30071070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505.
    Story SP; Kline EL; Hughes TA; Riley MB; Hayasaka SS
    Arch Environ Contam Toxicol; 2004 Aug; 47(2):168-76. PubMed ID: 15386141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The development of solid-surface fluorescence characterization of polycyclic aromatic hydrocarbons for potential screening tests in environmental samples.
    Fernández-Sánchez JF; Segura Carretero A; Cruces-Blanco C; Fernández-Gutiérrez A
    Talanta; 2003 Jun; 60(2-3):287-93. PubMed ID: 18969051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissipation of polycyclic aromatic hydrocarbons from soil added with manure or vermicompost.
    Alvarez-Bernal D; García-Díaz EL; Contreras-Ramos SM; Dendooven L
    Chemosphere; 2006 Nov; 65(9):1642-51. PubMed ID: 16580045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urinary polycyclic aromatic hydrocarbons and monohydroxy metabolites as biomarkers of exposure in coke oven workers.
    Rossella F; Campo L; Pavanello S; Kapka L; Siwinska E; Fustinoni S
    Occup Environ Med; 2009 Aug; 66(8):509-16. PubMed ID: 19221113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
    Uz I; Duan YP; Ogram A
    FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: expression in Mycobacterium smegmatis mc(2)155.
    Pagnout C; Frache G; Poupin P; Maunit B; Muller JF; Férard JF
    Res Microbiol; 2007 Mar; 158(2):175-86. PubMed ID: 17258432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria.
    Kleemann R; Meckenstock RU
    FEMS Microbiol Ecol; 2011 Dec; 78(3):488-96. PubMed ID: 22066721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpretative optimization and artificial neural network modeling of the gas chromatographic separation of polycyclic aromatic hydrocarbons.
    Sremac S; Popović A; Todorović Z; Cokesa D; Onjia A
    Talanta; 2008 Jun; 76(1):66-71. PubMed ID: 18585242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system.
    Tauler M; Vila J; Nieto JM; Grifoll M
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3321-36. PubMed ID: 26637425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil.
    Fazlurrahman ; Batra M; Pandey J; Suri CR; Jain RK
    Lett Appl Microbiol; 2009 Dec; 49(6):721-9. PubMed ID: 19818008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge.
    Zhu SN; Liu DQ; Fan L; Ni JR
    J Hazard Mater; 2008 Dec; 160(2-3):289-94. PubMed ID: 18420344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1.
    Wang B; Lai Q; Cui Z; Tan T; Shao Z
    Environ Microbiol; 2008 Aug; 10(8):1948-63. PubMed ID: 18430013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.