These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 8868296)
1. Chronic naloxone-induced supersensitivity affects neither tolerance to nor physical dependence on morphine at hypothalamus-pituitary-adrenocortical axis. Alcaraz C; Vargas ML; Milanés MV Neuropeptides; 1996 Feb; 30(1):29-36. PubMed ID: 8868296 [TBL] [Abstract][Full Text] [Related]
2. Chronic naloxone treatment induces supersensitivity to a mu but not to a kappa agonist at the hypothalamus-pituitary-adrenocortical axis level. Alcaraz C; Vargas ML; Fuente T; Milanés MV J Pharmacol Exp Ther; 1993 Sep; 266(3):1602-6. PubMed ID: 8396640 [TBL] [Abstract][Full Text] [Related]
3. Kappa opiate agonists modulate the hypothalamic-pituitary-adrenocortical axis in the rat. Iyengar S; Kim HS; Wood PL J Pharmacol Exp Ther; 1986 Aug; 238(2):429-36. PubMed ID: 3016237 [TBL] [Abstract][Full Text] [Related]
4. Modulation by catecholamine of hypothalamus-pituitary-adrenocortical (HPA) axis activity in morphine-tolerance and withdrawal. Martinez-Piñero MG; Milanes MV; Vargas ML Gen Pharmacol; 1994 Jan; 25(1):187-92. PubMed ID: 8026704 [TBL] [Abstract][Full Text] [Related]
5. Spironolactone decreases the somatic signs of opiate withdrawal by blocking the mineralocorticoid receptors (MR). Navarro-Zaragoza J; Laorden ML; Milanés MV Toxicology; 2014 Dec; 326():36-43. PubMed ID: 25308750 [TBL] [Abstract][Full Text] [Related]
6. Morphine withdrawal activates hypothalamic-pituitary-adrenal axis and heat shock protein 27 in the left ventricle: the role of extracellular signal-regulated kinase. Martínez-Laorden E; Hurle MA; Milanés MV; Laorden ML; Almela P J Pharmacol Exp Ther; 2012 Sep; 342(3):665-75. PubMed ID: 22647273 [TBL] [Abstract][Full Text] [Related]
7. Changes in catecholaminergic pathways innervating paraventricular nucleus and pituitary-adrenal axis response during morphine dependence: implication of alpha(1)- and alpha(2)-adrenoceptors. Laorden ML; Fuertes G; González-Cuello A; Milanés MV J Pharmacol Exp Ther; 2000 May; 293(2):578-84. PubMed ID: 10773031 [TBL] [Abstract][Full Text] [Related]
8. Effects of specific mu and kappa opiate tolerance and abstinence on hypothalamo-pituitary-adrenal axis secretion in the rat. Ignar DM; Kuhn CM J Pharmacol Exp Ther; 1990 Dec; 255(3):1287-95. PubMed ID: 2175800 [TBL] [Abstract][Full Text] [Related]
9. Chronic kappa opioid receptor antagonism produces supersensitivity to U-50,488H at the hypothalamo-pituitary-adrenocortical (HPA) axis level. Alcaraz C; Milanés MV; Vargas ML J Pharmacol Exp Ther; 1993 Sep; 266(3):1385-9. PubMed ID: 8396634 [TBL] [Abstract][Full Text] [Related]
10. Cardiac adverse effects of naloxone-precipitated morphine withdrawal on right ventricle: role of corticotropin-releasing factor (CRF) 1 receptor. Navarro-Zaragoza J; Martínez-Laorden E; Mora L; Hidalgo J; Milanés MV; Laorden ML Toxicol Appl Pharmacol; 2014 Feb; 275(1):28-35. PubMed ID: 24398105 [TBL] [Abstract][Full Text] [Related]
11. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides. Iyengar S; Kim HS; Wood PL Brain Res; 1987 Dec; 435(1-2):220-6. PubMed ID: 2892574 [TBL] [Abstract][Full Text] [Related]
12. Involvement of kappa-opioid receptor mechanisms in the calcitonin-induced potentiation of opioid effects at the hypothalamus-pituitary-adrenocortical axis. Milanés MV; Vargas ML; Martín MI Eur J Pharmacol; 1994 Dec; 271(1):103-9. PubMed ID: 7698193 [TBL] [Abstract][Full Text] [Related]
13. L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone. Esmaeili-Mahani S; Fathi Y; Motamedi F; Hosseinpanah F; Ahmadiani A Horm Behav; 2008 Feb; 53(2):351-7. PubMed ID: 18177874 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of morphine tolerance and dependence by diazepam and its relation to mu-opioid receptors in the rat brain and spinal cord. Tejwani GA; Sheu MJ; Sribanditmongkol P; Satyapriya A Brain Res; 1998 Jun; 797(2):305-12. PubMed ID: 9666154 [TBL] [Abstract][Full Text] [Related]
15. Plasma corticosterone changes in response to central or peripheral administration of kappa and sigma opiate agonists. Eisenberg RM J Pharmacol Exp Ther; 1985 Jun; 233(3):863-9. PubMed ID: 2989500 [TBL] [Abstract][Full Text] [Related]
16. Naloxone-induced conditioned place aversion score and extinction period are higher in C57BL/6J morphine-dependent mice than in Swiss: Role of HPA axis. Navarro-Zaragoza J; Martínez-Laorden E; Teruel-Fernández FJ; Gómez-Murcia V; Cánovas A; Milanés MV; Laorden ML; Almela P Pharmacol Biochem Behav; 2021 Feb; 201():173106. PubMed ID: 33444599 [TBL] [Abstract][Full Text] [Related]
17. Effects of morphine and morphine withdrawal on brainstem neurons innervating hypothalamic nuclei that control the pituitary-adrenocortical axis in rats. Laorden ML; Castells MT; Milanés MV Br J Pharmacol; 2002 May; 136(1):67-75. PubMed ID: 11976269 [TBL] [Abstract][Full Text] [Related]
18. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling. Wang HY; Friedman E; Olmstead MC; Burns LH Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657 [TBL] [Abstract][Full Text] [Related]
19. Focal kappa-opioid receptor-mediated dependence and withdrawal in the nucleus paragigantocellularis. Sinchaisuk S; Ho IK; Rockhold RW Pharmacol Biochem Behav; 2002 Dec; 74(1):241-52. PubMed ID: 12376173 [TBL] [Abstract][Full Text] [Related]
20. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]