BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8868419)

  • 1. Cytosine accumulation as a measure of the proton electrochemical gradient acting on the overexpressed cytosine permease of Saccharomyces cerevisiae.
    Eddy AA; Hopkins P
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():449-457. PubMed ID: 8868419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorocytosine causes uncoupled dissipation of the proton gradient and behaves as an imperfect substrate of the yeast cytosine permease.
    Hopkins P; Shaw R; Acik L; Oliver S; Eddy AA
    Yeast; 1992 Dec; 8(12):1053-64. PubMed ID: 1293884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton stoichiometry of the overexpressed uracil symport of the yeast Saccharomyces cerevisiae.
    Eddy AA; Hopkins P
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):125-30. PubMed ID: 9806893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton and charge circulation through substrate symports in Saccharomyces cerevisiae: non-classical behaviour of the cytosine symport.
    Eddy AA; Hopkins P; Shaw R
    Symp Soc Exp Biol; 1994; 48():123-39. PubMed ID: 7597638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Saccharomyces cerevisiae cytosine transporter using energizable plasma membrane vesicles.
    Pinson B; Napias C; Chevallier J; Van den Broek PJ; Brèthes D
    J Biol Chem; 1997 Nov; 272(46):28918-24. PubMed ID: 9360962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expulsion of uracil and thymine from the yeast Saccharomyces cerevisiae: contrasting responses to changes in the proton electrochemical gradient.
    Eddy AA
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():219-229. PubMed ID: 9025296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrochemical proton gradient in Mycoplasma cells.
    Benyoucef M; Rigaud JL; Leblanc G
    Eur J Biochem; 1981 Jan; 113(3):491-8. PubMed ID: 6260481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.
    Friedberg I; Kaback HR
    J Bacteriol; 1980 May; 142(2):651-8. PubMed ID: 7380805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient.
    Carty SE; Johnson RG; Scarpa A
    J Biol Chem; 1981 Nov; 256(21):11244-50. PubMed ID: 6457050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relation between transport rate and delta mu H.
    Andersen OS; Silveira JE; Steinmetz PR
    J Gen Physiol; 1985 Aug; 86(2):215-34. PubMed ID: 2995541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of electrochemical proton gradient formation by membrane vesicles from an obligately acidophilic bacterium.
    Guffanti AA; Mann M; Sherman TL; Krulwich TA
    J Bacteriol; 1984 Aug; 159(2):448-52. PubMed ID: 6746570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW; Patel L; Rottenberg H; Kaback HR
    Biochemistry; 1980 Jan; 19(1):1-9. PubMed ID: 6986161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine-cytosine permease of Saccharomyces cerevisiae. Effect of external pH on nucleobase uptake and binding.
    Brèthes D; Napias C; Torchut E; Chevallier J
    Eur J Biochem; 1992 Dec; 210(3):785-91. PubMed ID: 1483463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts.
    Johnson RG; Carty SE; Scarpa A
    J Biol Chem; 1981 Jun; 256(11):5773-80. PubMed ID: 7240171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of intracellular pH by the distribution of benzoic acid in S. cerevisiae. Amino acid transport and proton gradient].
    de Bongioanni LC; Ramos EH
    Rev Argent Microbiol; 1988; 20(1):1-15. PubMed ID: 2845476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of an intragenic second-site suppressor of purine-cytosine permease from Saccharomyces cerevisiae. Possible role of Ser272 in the base translocation process.
    Ferreira T; Chevallier J; Paumard P; Napias C; Brèthes D
    Eur J Biochem; 1999 Feb; 260(1):22-30. PubMed ID: 10091580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protonmotive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase.
    Marin B; Marin-Lanza M; Komor E
    Biochem J; 1981 Aug; 198(2):365-72. PubMed ID: 6275844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradation of the magnitude of the electrochemical proton gradient in Mycoplasma cells.
    Benyoucef M; Rigaud JL; Leblanc G
    Eur J Biochem; 1981 Jan; 113(3):499-506. PubMed ID: 6260482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and in vitro studies of the purine-cytosine permease of Saccharomyces cerevisiae. Functional analysis of a mutant with an altered apparent transport constant of uptake.
    Brèthes D; Chirio MC; Napias C; Chevallier MR; Lavie JL; Chevallier J
    Eur J Biochem; 1992 Mar; 204(2):699-704. PubMed ID: 1541283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient.
    Johnson RG; Carty S; Scarpa A
    Fed Proc; 1982 Sep; 41(11):2746-54. PubMed ID: 7117549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.