BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8868423)

  • 21. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.
    Georgatsou E; Mavrogiannis LA; Fragiadakis GS; Alexandraki D
    J Biol Chem; 1997 May; 272(21):13786-92. PubMed ID: 9153234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation.
    García MG; O'Connor JE; García LL; Martínez SI; Herrero E; del Castillo Agudo L
    Yeast; 2001 Mar; 18(4):301-11. PubMed ID: 11223939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 1999 Dec; 67(12):6403-8. PubMed ID: 10569756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferric-reductase activities in Vibrio vulnificus biotypes 1 and 2.
    Mazoy R; Lopez EM; Fouz B; Amaro C; Lemos ML
    FEMS Microbiol Lett; 1999 Mar; 172(2):205-11. PubMed ID: 10188249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.
    Hassett R; Kosman DJ
    J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
    Lesuisse E; Labbe P
    J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors.
    Baek YU; Li M; Davis DA
    Eukaryot Cell; 2008 Jul; 7(7):1168-79. PubMed ID: 18503007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans.
    Weissman Z; Shemer R; Kornitzer D
    Mol Microbiol; 2002 Jun; 44(6):1551-60. PubMed ID: 12067343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper-dependent transcriptional regulation by Candida albicans Mac1p.
    Woodacre A; Mason RP; Jeeves RE; Cashmore AM
    Microbiology (Reading); 2008 May; 154(Pt 5):1502-1512. PubMed ID: 18451059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Candida albicans ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor.
    Liang Y; Gui L; Wei DS; Zheng W; Xing LJ; Li MC
    FEMS Yeast Res; 2009 Mar; 9(2):270-7. PubMed ID: 19076241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1.
    Marvin ME; Mason RP; Cashmore AM
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2197-2208. PubMed ID: 15256562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.
    Johnson DB; Bridge TA
    J Appl Microbiol; 2002; 92(2):315-21. PubMed ID: 11849360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Candida albicans Aft2p transcription factor in ferric reductase activity, morphogenesis and virulence.
    Liang Y; Wei D; Wang H; Xu N; Zhang B; Xing L; Li M
    Microbiology (Reading); 2010 Oct; 156(Pt 10):2912-2919. PubMed ID: 20595261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.
    Knight SA; Vilaire G; Lesuisse E; Dancis A
    Infect Immun; 2005 Sep; 73(9):5482-92. PubMed ID: 16113264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD(P)H:ferric iron reductase in endosomal membranes from rat liver.
    Scheiber B; Goldenberg H
    Arch Biochem Biophys; 1993 Sep; 305(2):225-30. PubMed ID: 8396885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ferric iron reduction and iron uptake in eucaryotes: studies with the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Anderson GJ; Dancis A; Roman DG; Klausner RD
    Adv Exp Med Biol; 1994; 356():81-9. PubMed ID: 7887248
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.