These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 8870073)

  • 1. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants.
    Skulachev VP
    Q Rev Biophys; 1996 May; 29(2):169-202. PubMed ID: 8870073
    [No Abstract]   [Full Text] [Related]  

  • 2. [Nonphosphorylating respiration as the mechanism preventing the formation of active forms of oxygen].
    Skulachev VP
    Mol Biol (Mosk); 1995; 29(6):1199-209. PubMed ID: 8592495
    [No Abstract]   [Full Text] [Related]  

  • 3. The sites of superoxide anion generation in higher plant mitochondria.
    Rich PR; Bonner WD
    Arch Biochem Biophys; 1978 May; 188(1):206-13. PubMed ID: 209742
    [No Abstract]   [Full Text] [Related]  

  • 4. Possible role of free oxidation processes in the regulation of reactive oxygen species production in plant mitochondria.
    Popov VN
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1316-7. PubMed ID: 14641052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Alternative respiratory pathway in higher plants].
    Rychter AM
    Postepy Biochem; 1982; 28(1-2):89-111. PubMed ID: 6763700
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane-linked systems preventing superoxide formation.
    Skulachev VP
    Biosci Rep; 1997 Jun; 17(3):347-66. PubMed ID: 9337489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles].
    Grigolava IV; Ksenzenko MIu; Konstantinob AA; Tikhonov AN; Kerimov TM
    Biokhimiia; 1980 Jan; 45(1):75-82. PubMed ID: 6260236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Decrease in the intracellular concentration of O2 as a special function of the cellular respiratory system].
    Skulachev VP
    Biokhimiia; 1994 Dec; 59(12):1910-2. PubMed ID: 7873690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hyperoxia on superoxide production by lung submitochondrial particles.
    Turrens JF; Freeman BA; Levitt JG; Crapo JD
    Arch Biochem Biophys; 1982 Sep; 217(2):401-10. PubMed ID: 6291460
    [No Abstract]   [Full Text] [Related]  

  • 10. Stimulation of electron transport and activation of reduced nicotinamide--adenine dinucleotide dehydrogenase in Jerusalem-artichoke mitochondria.
    Palmer JM; Sotthibandhu R
    Biochem Soc Trans; 1975; 3(1):171-3. PubMed ID: 1126529
    [No Abstract]   [Full Text] [Related]  

  • 11. The H+/e- stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria.
    Papa S; Guerrieri F; Lorusso M; Izzo G; Boffoli D; Capuano F; Capitanio N; Altamura N
    Biochem J; 1980 Oct; 192(1):203-18. PubMed ID: 6272694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the energy coupling in mitochondria by some steroid and thyroid hormones.
    Starkov AA; Simonyan RA; Dedukhova VI; Mansurova SE; Palamarchuk LA; Skulachev VP
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):173-83. PubMed ID: 9030262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds.
    Hassan HM; Fridovich I
    Arch Biochem Biophys; 1979 Sep; 196(2):385-95. PubMed ID: 225995
    [No Abstract]   [Full Text] [Related]  

  • 14. Proton electrochemical gradients and energy-transduction processes.
    Ferguson SJ; Sorgato MC
    Annu Rev Biochem; 1982; 51():185-217. PubMed ID: 6287914
    [No Abstract]   [Full Text] [Related]  

  • 15. [Oxygen toxicity (author's transl)].
    Asada K
    Seikagaku; 1976; 48(4):226-57. PubMed ID: 184215
    [No Abstract]   [Full Text] [Related]  

  • 16. [Generation of oxygen-derived radicals in mitochondria and their damages].
    Nishida T; Tagawa K
    Tanpakushitsu Kakusan Koso; 1988 Dec; 33(16):2717-22. PubMed ID: 2855137
    [No Abstract]   [Full Text] [Related]  

  • 17. Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria.
    Roberts TH; Fredlund KM; Møller IM
    FEBS Lett; 1995 Oct; 373(3):307-9. PubMed ID: 7589489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrion and biologic oxidations.
    Nahrwold ML; Cohen PJ
    Clin Anesth; 1975; 11(1):1-23. PubMed ID: 164299
    [No Abstract]   [Full Text] [Related]  

  • 19. Cyanide-insensitive oxidation of ascorbate + NNN'N'-tetramethyl-p-phenylenediamine mixture by mung-bean (Phaseolus aureus) mitochondria. An energy-linked function.
    Wilson SB
    Biochem J; 1978 Oct; 176(1):129-36. PubMed ID: 728100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants.
    Igamberdiev AU; Bykova NV; Gardeström P
    FEBS Lett; 1997 Jul; 412(2):265-9. PubMed ID: 9256232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.