These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 8870073)

  • 21. Respiration-coupled H+ ejection by mitochondria.
    Lehninger AL; Reynafarje B; Alexandre A; Villalobo A
    Ann N Y Acad Sci; 1980; 341():585-92. PubMed ID: 6249161
    [No Abstract]   [Full Text] [Related]  

  • 22. Superoxide production by the mitochondrial respiratory chain.
    Turrens JF
    Biosci Rep; 1997 Feb; 17(1):3-8. PubMed ID: 9171915
    [No Abstract]   [Full Text] [Related]  

  • 23. [Inhibition of H2O2 and O2-. generation in the respiratory chain, treated with 2,3-dimercaptopropanol].
    Ksenzenko MIu; Konstantinov AA; Tikhonov AN; Ruuge EK
    Biokhimiia; 1982 Sep; 47(9):1577-9. PubMed ID: 6291643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of steroid hormones on production of reactive oxygen species in mitochondria].
    Fedotcheva TA; Kruglov AG; Teplova VV; Fedotcheva NI; Rzheznikov VM; Shimanovskiĭ NL
    Biofizika; 2012; 57(6):1014-9. PubMed ID: 23272582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The respiratory chain of plant mitochondria. XV. Equilibration of cytochromes C549, b553, b557 and ubiquinone in Mung bean mitochondria: placement of cytochrome b 557 and estimation of the midpoint potential of ubiquinone.
    Storey BI
    Biochim Biophys Acta; 1973 Apr; 292(3):592-603. PubMed ID: 4705446
    [No Abstract]   [Full Text] [Related]  

  • 26. Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems.
    Sugioka K; Nakano M; Totsune-Nakano H; Minakami H; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1988 Dec; 936(3):377-85. PubMed ID: 2848580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen.
    Singh A
    Can J Physiol Pharmacol; 1982 Nov; 60(11):1330-45. PubMed ID: 6295572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemistry of oxygen radical species.
    Brunori M; Rotilio G
    Methods Enzymol; 1984; 105():22-35. PubMed ID: 6328182
    [No Abstract]   [Full Text] [Related]  

  • 29. Further studies on the 11-beta-hydroxylation of deoxycorticosterone and progesterone by rat adrenal mitochondria.
    Caldwell BV; Péron FG; McCarthy JL
    Biochemistry; 1968 Feb; 7(2):788-95. PubMed ID: 4384526
    [No Abstract]   [Full Text] [Related]  

  • 30. [Oxidation of malate, NADH and glycine in C3 and C4 plant mitochondria].
    Neuburger M; Douce R
    C R Acad Hebd Seances Acad Sci D; 1977 Oct; 285(8):881-4. PubMed ID: 199373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerobic performance and oxygen free-radicals.
    Benzi G
    J Sports Med Phys Fitness; 1993 Sep; 33(3):205-22. PubMed ID: 8107472
    [No Abstract]   [Full Text] [Related]  

  • 32. Control of plant mitochondrial respiration.
    Affourtit C; Krab K; Moore AL
    Biochim Biophys Acta; 2001 Mar; 1504(1):58-69. PubMed ID: 11239485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation.
    Gille L; Nohl H
    Arch Biochem Biophys; 2001 Apr; 388(1):34-8. PubMed ID: 11361137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction with mitochondria of the anthracycline cytostatics adriamycin and daunomycin.
    Porumb H; Petrescu I
    Prog Biophys Mol Biol; 1986; 48(2):103-25. PubMed ID: 3029807
    [No Abstract]   [Full Text] [Related]  

  • 35. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways.
    Staniek K; Gille L; Kozlov AV; Nohl H
    Free Radic Res; 2002 Apr; 36(4):381-7. PubMed ID: 12069101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dibutylchloromethyltin chloride, a potent inhibitor of electron transport in plant mitochondria.
    Moore AL; Linnett PE; Beechey RB
    J Bioenerg Biomembr; 1980 Aug; 12(3-4):309-23. PubMed ID: 7217044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The anoxic plant mitochondrion as a nitrite: NO reductase.
    Gupta KJ; Igamberdiev AU
    Mitochondrion; 2011 Jul; 11(4):537-43. PubMed ID: 21406251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EPR studies of higher plant mitochondria. I Ubisemiquinone and its relation to alternative respiratory oxidations.
    Rich PR; Moore AL; Ingledew WJ; Bonner WD
    Biochim Biophys Acta; 1977 Dec; 462(3):501-14. PubMed ID: 202304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 40. Oxidative interactions between fatty acid peroxy radicals and quinones: possible involvement in cyanide-resistant electron transport in plant mitochondria.
    Rustin P; Dupont J; Lance C
    Arch Biochem Biophys; 1983 Sep; 225(2):630-9. PubMed ID: 6414377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.