These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8870663)
61. Chemical, photochemical and spectroscopic characterization of an alkaline proteinase from Bacillus subtilis variant DY. Genov N; Shopova M; Boteva R; Jori G; Ricchelli F Biochem J; 1982 Nov; 207(2):193-200. PubMed ID: 6818945 [TBL] [Abstract][Full Text] [Related]
62. Inactivation of polygalacturonase and pectate lyase produced by pH tolerant fungus Fusarium moniliforme NCIM 1276 in a liquid medium and in the host tissue. Niture SK; Kumar AR; Parab PB; Pant A Microbiol Res; 2008; 163(1):51-62. PubMed ID: 16697174 [TBL] [Abstract][Full Text] [Related]
63. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions. Aronsson AC; Sellin S; Tibbelin G; Mannervik B Biochem J; 1981 Jul; 197(1):67-75. PubMed ID: 7317034 [TBL] [Abstract][Full Text] [Related]
64. Chemical modification by 2,4,6-trinitrobenzenesulfonic acid (TNBS) of an essential amino group in 3-ketovalidoxylamine A C-N lyase. Takeuchi M; Neyazaki K; Matsui K Chem Pharm Bull (Tokyo); 1990 May; 38(5):1419-20. PubMed ID: 2393971 [TBL] [Abstract][Full Text] [Related]
65. Modification of a single tryptophan of the inorganic pyrophosphatase from thermophilic bacterium PS-3: possible involvement in its substrate binding. Kaneko S; Ichiba T; Hirano N; Hachimori A Biochim Biophys Acta; 1991 Apr; 1077(3):281-4. PubMed ID: 1851440 [TBL] [Abstract][Full Text] [Related]
66. Involvement of tryptophan(s) at the active site of polyphosphate/ATP glucokinase from Mycobacterium tuberculosis. Hsieh PC; Shenoy BC; Haase FC; Jentoft JE; Phillips NF Biochemistry; 1993 Jun; 32(24):6243-9. PubMed ID: 8390296 [TBL] [Abstract][Full Text] [Related]
67. Trigalacturonate-producing pectate lyase PelQ1 from Saccharobesus litoralis with unique exolytic activity. Lian MQ; Furusawa G; Teh AH Carbohydr Res; 2024 Feb; 536():109045. PubMed ID: 38340525 [TBL] [Abstract][Full Text] [Related]
68. Differential effect of site-directed mutations in pelC on pectate lyase activity, plant tissue maceration, and elicitor activity. Kita N; Boyd CM; Garrett MR; Jurnak F; Keen NT J Biol Chem; 1996 Oct; 271(43):26529-35. PubMed ID: 8900122 [TBL] [Abstract][Full Text] [Related]
70. Implication of tryptophan and histidine in the active site of endo-polygalacturonase from Aspergillus ustus: elucidation of the reaction mechanism. Rao MN; Kembhavi AA; Pant A Biochim Biophys Acta; 1996 Sep; 1296(2):167-73. PubMed ID: 8814223 [TBL] [Abstract][Full Text] [Related]
71. "Self-catabolite repression" of pectate lyase in Erwinia carotovora. Tsuyumu S J Bacteriol; 1979 Feb; 137(2):1035-6. PubMed ID: 217862 [TBL] [Abstract][Full Text] [Related]
72. The catalytic mechanism and unique low pH optimum of Caldicellulosiruptor bescii family 3 pectate lyase. Alahuhta M; Taylor LE; Brunecky R; Sammond DW; Michener W; Adams MW; Himmel ME; Bomble YJ; Lunin V Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1946-54. PubMed ID: 26327384 [TBL] [Abstract][Full Text] [Related]
73. Chemical modification of the alginate lyase from Klebsiella pneumoniae. Hicks SJ; Gacesa P Biochem Soc Trans; 1994 Aug; 22(3):309S. PubMed ID: 7821568 [No Abstract] [Full Text] [Related]
74. The Refined Three-Dimensional Structure of Pectate Lyase E from Erwinia chrysanthemi at 2.2 A Resolution. Lietzke SE; Scavetta RD; Yoder MD; Jurnak F Plant Physiol; 1996 May; 111(1):73-92. PubMed ID: 12226275 [TBL] [Abstract][Full Text] [Related]
75. Enzyme kinetics and chemical modification of alpha-1,4-glucan lyase from Gracilariopsis sp. Nyvall P; Pedersén M; Kenne L; Gacesa P Phytochemistry; 2000 May; 54(2):139-45. PubMed ID: 10872204 [TBL] [Abstract][Full Text] [Related]
76. The Three-Dimensional Structure of Pectate Lyase E, a Plant Virulence Factor from Erwinia chrysanthemi. Lietzke SE; Yoder MD; Keen NT; Jurnak F Plant Physiol; 1994 Nov; 106(3):849-862. PubMed ID: 12232373 [TBL] [Abstract][Full Text] [Related]
77. Steroid-protein interactions. XXXIV. Chemical modification of alpha1-acid glycoprotein for characterization of the progesterone binding site. Kute T; Westphal U Biochim Biophys Acta; 1976 Jan; 420(1):195-213. PubMed ID: 174732 [TBL] [Abstract][Full Text] [Related]
78. The specificity of pectate lyase VdPelB from Verticilium dahliae is highlighted by structural, dynamical and biochemical characterizations. Safran J; Ung V; Bouckaert J; Habrylo O; Molinié R; Fontaine JX; Lemaire A; Voxeur A; Pilard S; Pau-Roblot C; Mercadante D; Pelloux J; Sénéchal F Int J Biol Macromol; 2023 Mar; 231():123137. PubMed ID: 36639075 [TBL] [Abstract][Full Text] [Related]
79. alpha-1,4-Glucan lyase, a new class of starch/glycogen degrading enzyme. III. Substrate specificity, mode of action, and cleavage mechanism. Yu S; Ahmad T; Kenne L; Pedersén M Biochim Biophys Acta; 1995 May; 1244(1):1-9. PubMed ID: 7766642 [TBL] [Abstract][Full Text] [Related]
80. Nanotechnology enabled enhancement of enzyme activity and thermostability: study on impaired pectate lyase from attenuated Macrophomina phaseolina in presence of hydroxyapatite nanoparticle. Dutta N; Mukhopadhyay A; Dasgupta AK; Chakrabarti K PLoS One; 2013; 8(5):e63567. PubMed ID: 23691068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]