BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8871094)

  • 1. The development of excitatory transmitter amino acid-containing neurons in the rat visual cortex. A light and electron microscopic immunocytochemical study.
    Dori I; Parnavelas JG
    Exp Brain Res; 1996 Aug; 110(3):347-59. PubMed ID: 8871094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory transmitter amino acid-containing neurons in the rat visual cortex: a light and electron microscopic immunocytochemical study.
    Dori I; Petrou M; Parnavelas JG
    J Comp Neurol; 1989 Dec; 290(2):169-84. PubMed ID: 2574198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit.
    Mcdonald AJ
    J Comp Neurol; 1996 Feb; 365(3):367-79. PubMed ID: 8822176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the ultrastructural features of neuropeptide Y-immunoreactive neurons in the rat visual cortex.
    Eadie LA; Parnavelas JG; Franke E
    J Neurocytol; 1990 Aug; 19(4):455-65. PubMed ID: 2243241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proportion of glutamate- and aspartate-immunoreactive neurons in the efferent pathways of the rat visual cortex varies according to the target.
    Dori I; Dinopoulos A; Cavanagh ME; Parnavelas JG
    J Comp Neurol; 1992 May; 319(2):191-204. PubMed ID: 1381727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and morphological characterization of phosphate-activated glutaminase-immunoreactive neurons in cat visual cortex.
    Van der Gucht E; Jacobs S; Kaneko T; Vandesande F; Arckens L
    Brain Res; 2003 Oct; 988(1-2):29-42. PubMed ID: 14519524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential distribution of L-aspartate- and L-glutamate-immunoreactive structures in the arcopallium and medial striatum of the domestic chick (Gallus domesticus).
    Adám AS; Csillag A
    J Comp Neurol; 2006 Sep; 498(2):266-76. PubMed ID: 16856140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex.
    Blanton MG; Kriegstein AR
    J Comp Neurol; 1991 Aug; 310(4):571-92. PubMed ID: 1682348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. IV. Avian pancreatic polypeptide.
    McDonald JK; Parnavelas JG; Karamanlidis AN; Brecha N
    J Neurocytol; 1982 Dec; 11(6):985-95. PubMed ID: 7153793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic neurons.
    Gao WJ; Newman DE; Wormington AB; Pallas SL
    J Comp Neurol; 1999 Jun; 409(2):261-73. PubMed ID: 10379919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate and aspartate immunoreactivity in the reciprocal projections between the anterior thalamic nuclei and the retrosplenial granular cortex in the rat.
    Gonzalo-Ruiz A; Sanz JM; Morte L; Lieberman AR
    Brain Res Bull; 1997; 42(4):309-21. PubMed ID: 9043718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with Na+K+ATPase, NADPH-diaphorase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1.
    Wong-Riley M; Anderson B; Liebl W; Huang Z
    Neuroscience; 1998 Apr; 83(4):1025-45. PubMed ID: 9502244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of AMPA receptors and glutamate during pre- and postnatal development in the visual cortex of ferrets.
    Herrmann K
    J Comp Neurol; 1996 Nov; 375(1):1-17. PubMed ID: 8913890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal changes in the laminar and subcellular distribution of NMDA-R1 subunits in the cat visual cortex as revealed by immuno-electron microscopy.
    Aoki C
    Brain Res Dev Brain Res; 1997 Jan; 98(1):41-59. PubMed ID: 9027403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions.
    Ortega F; Hennequet L; Sarría R; Streit P; Grandes P
    Neuroscience; 1995 Jul; 67(1):125-34. PubMed ID: 7477893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis.
    Beitz AJ
    J Histochem Cytochem; 1990 Dec; 38(12):1755-65. PubMed ID: 1701457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noradrenergic innervation of the developing and mature visual and motor cortex of the rat brain: a light and electron microscopic immunocytochemical analysis.
    Latsari M; Dori I; Antonopoulos J; Chiotelli M; Dinopoulos A
    J Comp Neurol; 2002 Apr; 445(2):145-58. PubMed ID: 11891659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the ultrastructural features of somatostatin-immunoreactive neurons in the rat visual cortex.
    Eadie LA; Parnavelas JG; Franke E
    J Neurocytol; 1987 Aug; 16(4):445-59. PubMed ID: 2890717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in calpain activity, GluR1 receptors and in the effect of kainic acid treatment in rat brain.
    Bi X; Chen J; Baudry M
    Neuroscience; 1997 Dec; 81(4):1123-35. PubMed ID: 9330373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate, GABA and precursor amino acids in adult mouse neocortex: cellular diversity revealed by quantitative immunocytochemistry.
    Hill E; Kalloniatis M; Tan SS
    Cereb Cortex; 2000 Nov; 10(11):1132-42. PubMed ID: 11053233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.