BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 8871180)

  • 1. Crystallin composition of human cataractous lens may be modulated by protein glycation.
    Ramalho J; Marques C; Pereira P; Mota MC
    Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S232-8. PubMed ID: 8871180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glycation in human lens protein structure change.
    Ramalho JS; Marques C; Pereira PC; Mota MC
    Eur J Ophthalmol; 1996; 6(2):155-61. PubMed ID: 8823589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced glycation end products in human senile and diabetic cataractous lenses.
    Zarina S; Zhao HR; Abraham EC
    Mol Cell Biochem; 2000 Jul; 210(1-2):29-34. PubMed ID: 10976755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential glycation of rat alpha-, beta- and gamma-crystallins.
    Swamy MS; Abraham EC
    Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycation of crystallins in lenses from aging and diabetic individuals.
    van Boekel MA; Hoenders HJ
    FEBS Lett; 1992 Dec; 314(1):1-4. PubMed ID: 1451795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T
    Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein glycation and in vivo distribution of human lens fluorescence.
    Mota MC; Carvalho P; Ramalho JS; Cardoso E; Gaspar AM; Abreu G
    Int Ophthalmol; 1994-1995; 18(4):187-93. PubMed ID: 7797380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats.
    Perry RE; Swamy MS; Abraham EC
    Exp Eye Res; 1987 Feb; 44(2):269-82. PubMed ID: 3582512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycation of human lens proteins: preferential glycation of alpha A subunits.
    Swamy MS; Abraham A; Abraham EC
    Exp Eye Res; 1992 Mar; 54(3):337-45. PubMed ID: 1521566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evidence for the involvement of alpha crystallin in the colouration/crosslinking of crystallins in age-related nuclear cataract.
    Chen YC; Reid GE; Simpson RJ; Truscott RJ
    Exp Eye Res; 1997 Dec; 65(6):835-40. PubMed ID: 9441707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus.
    Garlick RL; Mazer JS; Chylack LT; Tung WH; Bunn HF
    J Clin Invest; 1984 Nov; 74(5):1742-9. PubMed ID: 6438156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins.
    Linetsky M; Shipova E; Cheng R; Ortwerth BJ
    Biochim Biophys Acta; 2008 Jan; 1782(1):22-34. PubMed ID: 18023423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens protein composition, glycation and high molecular weight aggregation in aging rats.
    Swamy MS; Abraham EC
    Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1693-701. PubMed ID: 3654142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.