BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8871199)

  • 1. Sensory feedback and central afferent interaction in the muscle receptor organ of the crab, Carcinus maenas.
    Wildman M; Cannone A
    J Neurophysiol; 1996 Aug; 76(2):788-98. PubMed ID: 8871199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory characteristics of the P afferent neurone of the crab thoracic-coxal muscle receptor organ.
    Wildman MH; Cannone AJ
    J Comp Physiol A; 1996 Aug; 179(2):277-89. PubMed ID: 8765562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action potentials in a 'non-spiking' neurone: graded responses and spikes in the afferent P fibre of the crab thoracic-coxal muscle receptor organ.
    Wildman MH; Cannone AJ
    Brain Res; 1990 Feb; 509(2):339-42. PubMed ID: 2322831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
    DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1826-36. PubMed ID: 12611947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflex actions of one proprioceptor on the motoneurones of a muscle receptor and their central modulation in the shore crab.
    Head SI; Bush BM
    J Physiol; 1991 Jun; 437():49-62. PubMed ID: 1890645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. After-effects following responses of a muscle stretch receptor of the shore crab, Carcinus maenas.
    Harrison PJ
    Neurosci Lett; 1988 May; 88(2):211-5. PubMed ID: 3380357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information transfer rate of nonspiking afferent neurons in the crab.
    DiCaprio RA
    J Neurophysiol; 2004 Jul; 92(1):302-10. PubMed ID: 14973322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between afferent neurones in a crab muscle receptor organ.
    Wildman MH; Cannone AJ
    Brain Res; 1991 Nov; 565(1):175-8. PubMed ID: 1773354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae).
    Paul DH; Bruner J
    J Neurophysiol; 1999 May; 81(5):2493-500. PubMed ID: 10322084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia.
    Sillar KT; Skorupski P
    J Neurophysiol; 1986 Apr; 55(4):678-88. PubMed ID: 3701400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement of an inherited stretch receptor by a newly evolved stretch receptor in hippid sand crabs.
    Paul DH; Wilson LJ
    J Comp Neurol; 1994 Dec; 350(1):150-60. PubMed ID: 7860798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of scaphognathite nerve stimulation on the acutely deafferented crab ventilatory central pattern generator.
    Wilkens JL; DiCaprio RA
    J Comp Physiol A; 1994 Feb; 174(2):195-209. PubMed ID: 8145190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents.
    Gamble ER; DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1815-25. PubMed ID: 12611948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic inhibition of exteroceptive afferents by proprioceptive afferents in the terminal abdominal ganglion of the crayfish.
    Newland PL; Aonuma H; Sato M; Nagayama T
    J Neurophysiol; 1996 Aug; 76(2):1047-58. PubMed ID: 8871219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional specialization of central projections from identified primary afferent fibers.
    Koerber HR; Mendell LM
    J Neurophysiol; 1988 Nov; 60(5):1597-614. PubMed ID: 3199174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity and central modulation of feedback reflexes in crayfish motor pool.
    Skorupski P; Rawat BM; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):648-63. PubMed ID: 1578250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degeneration of afferent neurons and long-term stability of the ventilatory central pattern generator in chronically deafferented crabs.
    Wilkins JL
    J Comp Physiol A; 1994 Feb; 174(2):211-20. PubMed ID: 8145191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish.
    Le Ray D; Cattaert D
    J Neurophysiol; 1997 Apr; 77(4):1963-78. PubMed ID: 9114248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stretch reflex in crabs evoked by muscle receptor potentials in non-impulsive afferents.
    Bush BM; Cannone AJ
    J Physiol; 1973 Jul; 232(2):95P-96P. PubMed ID: 4727115
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.