These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8871199)

  • 41. Neural mechanisms underlying the clasp-knife reflex in the cat. II. Stretch-sensitive muscular-free nerve endings.
    Cleland CL; Hayward L; Rymer WZ
    J Neurophysiol; 1990 Oct; 64(4):1319-30. PubMed ID: 2258749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional morphology of the telson-uropod stretch receptor in the sand crab Emerita analoga.
    Wilson LJ; Paul DH
    J Comp Neurol; 1990 Jun; 296(3):343-58. PubMed ID: 2358541
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coxal muscle receptors in the crab: the receptor potentials of S and T fibers in response to ramp stretches.
    Bush BM; Roberts A
    J Exp Biol; 1971 Dec; 55(3):813-32. PubMed ID: 5160864
    [No Abstract]   [Full Text] [Related]  

  • 44. Receptive field characteristics of stretch-insensitive mechanosensitive units in the rat urinary bladder.
    Ishii N; Toda K; Kawakami S; Morozumi M; Yamada T
    Auton Neurosci; 2012 Nov; 171(1-2):8-13. PubMed ID: 22981188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous electrical activity and interaction of large and small cells in cardiac ganglion of the crab, Portunus sanguinolentus.
    Tazaki K; Cooke IM
    J Neurophysiol; 1979 Jul; 42(4):975-99. PubMed ID: 225450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells.
    Katz PS; Eigg MH; Harris-Warrick RM
    J Neurophysiol; 1989 Aug; 62(2):558-70. PubMed ID: 2769347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.
    Le Ray D; Combes D; Déjean C; Cattaert D
    J Neurophysiol; 2005 Aug; 94(2):1013-27. PubMed ID: 15829591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presynaptic inhibition is mediated by histamine and GABA in the crustacean escape reaction.
    el Manira A; Clarac F
    J Neurophysiol; 1994 Mar; 71(3):1088-95. PubMed ID: 8201404
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrastructural features of functionally identified primary afferent neurons with C (unmyelinated) fibers of the guinea pig: classification of dorsal root ganglion cell type with reference to sensory modality.
    Sugiura Y; Hosoya Y; Ito R; Kohno K
    J Comp Neurol; 1988 Oct; 276(2):265-78. PubMed ID: 3220983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synaptic interactions between a muscle-associated proprioceptor and body wall muscle motor neurons in larval and Adult manduca sexta.
    Tamarkin DA; Levine RB
    J Neurophysiol; 1996 Sep; 76(3):1597-610. PubMed ID: 8890279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of a radula opener neuromuscular system in Aplysia.
    Evans CG; Rosen S; Kupfermann I; Weiss KR; Cropper EC
    J Neurophysiol; 1996 Aug; 76(2):1267-81. PubMed ID: 8871235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents.
    Cattaert D; el Manira A; Clarac F
    J Neurophysiol; 1992 Mar; 67(3):610-24. PubMed ID: 1578247
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonspiking interneurons in the ventilatory central pattern generator of the shore crab, Carcinus maenas.
    Dicaprio RA
    J Comp Neurol; 1989 Jul; 285(1):83-106. PubMed ID: 2754049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrical coupling of mechanoreceptor afferents in the crayfish: a possible mechanism for enhancement of sensory signal transmission.
    el Manira A; Cattaert D; Wallén P; DiCaprio RA; Clarac F
    J Neurophysiol; 1993 Jun; 69(6):2248-51. PubMed ID: 8394415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The common inhibitor innervates muscles proximal to the autotomy fracture plane in Carcinus maenas.
    Moffett SB; Yox DP
    Brain Res; 1986 Feb; 366(1-2):388-91. PubMed ID: 3697693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parallel reflex and central control of promotor and receptor motoneurons in crayfish.
    Skorupski P; Bush BM
    Proc Biol Sci; 1992 Jul; 249(1324):7-12. PubMed ID: 1359550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excitability changes of terminal arborizations of single Ia and Ib afferent fibers produced by muscle and cutaneous conditioning volleys.
    Willis WD; Núnez R; Rudomín P
    J Neurophysiol; 1976 Nov; 39(6):1150-9. PubMed ID: 993824
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus.
    Tazaki K; Cooke IM
    J Neurophysiol; 1979 Jul; 42(4):1000-21. PubMed ID: 479918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic responses of series force receptors innervating the opener muscle apodeme in the blue crab, Callinectes sapidus.
    Tryba AK; Hartman HB
    J Comp Physiol A; 1997; 180(3):215-21. PubMed ID: 10866551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.