These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8871199)

  • 61. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Electrical activity of striated muscle fibers in the crab (Carcinus maenas). I. Effects of ionic solutions on the action potential].
    Haudecoeur G; Guilbault P
    J Physiol (Paris); 1972 Dec; 64(4):367-86. PubMed ID: 4661576
    [No Abstract]   [Full Text] [Related]  

  • 63. Differential and history-dependent modulation of a stretch receptor in the stomatogastric system of the crab, Cancer borealis.
    Birmingham JT; Billimoria CP; DeKlotz TR; Stewart RA; Marder E
    J Neurophysiol; 2003 Dec; 90(6):3608-16. PubMed ID: 12944539
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.
    Brunetti O; Della Torre G; Lucchi ML; Chiocchetti R; Bortolami R; Pettorossi VE
    Exp Brain Res; 2003 Sep; 152(2):251-62. PubMed ID: 12898093
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system.
    Norris BJ; Coleman MJ; Nusbaum MP
    J Neurophysiol; 1996 Jan; 75(1):97-108. PubMed ID: 8822544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrophysiologic analysis of snap amplitude in orthodromic and antidromic studies.
    Meythaler JM; Tuel SM; Cross LL; Reichart RT; Wertsch JJ
    Electromyogr Clin Neurophysiol; 1994 Sep; 34(6):323-9. PubMed ID: 8001471
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Facilitation effect of auxiliary noise stimuli on response of isolated frog muscle spindle to sinusoidal movements.
    Querfurth H; Grüsser OJ
    J Neurophysiol; 1986 Jan; 55(1):23-33. PubMed ID: 3485188
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. I. Multisensory coding and motor neuron monosynaptic responses.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3133-43. PubMed ID: 9405533
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antidromic modulation of a proprioceptor sensory discharge in crayfish.
    Bévengut M; Clarac F; Cattaert D
    J Neurophysiol; 1997 Aug; 78(2):1180-3. PubMed ID: 9307148
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas.
    Saver MA; Wilkens JL; Syed NI
    J Neurophysiol; 1999 Jun; 81(6):2964-76. PubMed ID: 10368413
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neurogenesis in the central olfactory pathway of the adult shore crab Carcinus maenas is controlled by sensory afferents.
    Hansen A; Schmidt M
    J Comp Neurol; 2001 Dec; 441(3):223-33. PubMed ID: 11745646
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Peripheral targets of centrally located putative accessory neurons of MRO in the isopod Ligia exotica.
    Hama N; Okada Y; Pollák E; Molnár L; Niida A
    J Exp Biol; 2003 Aug; 206(Pt 15):2619-28. PubMed ID: 12819268
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gating of afferent input by a central pattern generator.
    DiCaprio RA
    J Neurophysiol; 1999 Feb; 81(2):950-3. PubMed ID: 10036293
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neural control of ventilation in the shore crab, Carcinus maenas. II. Frequency-modulating interneurons.
    DiCaprio RA; Fourtner CR
    J Comp Physiol A; 1988 Feb; 162(3):375-88. PubMed ID: 3351789
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantification of responses from proprioceptive neurons in the limbs of the crab, Cancer magister.
    Cooper RL; Hartman HB
    J Exp Zool; 1999 Nov; 284(6):629-36. PubMed ID: 10531549
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of proprioceptive feedback from nonspiking mechanosensory cells in the sand crab, Emerita analoga.
    Paul DH
    J Exp Biol; 1976 Aug; 65(1):243-58. PubMed ID: 993703
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Distribution of chlorine in phasic striated fiber of the crab, Carcinus maenas].
    Goubel MM; Guilbault P
    C R Acad Hebd Seances Acad Sci D; 1972 Oct; 275(16):1795-9. PubMed ID: 4629575
    [No Abstract]   [Full Text] [Related]  

  • 79. Abdominal postural motor responses initiated by the muscle receptor organ in lobster depend upon centrally generated motor activity.
    Sukhdeo SC; Page CH
    J Exp Biol; 1992 Jan; 162():167-83. PubMed ID: 1552278
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The morphology and ultrastructure of tension receptors in the walking legs of the crab, Carcinus maenas.
    Parsons DW
    Cell Tissue Res; 1980; 211(1):139-49. PubMed ID: 7407882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.