These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 8871651)
1. Control of parasitemia and survival during Trypanosoma brucei brucei infection is related to strain-dependent ability to produce IL-4. Bakhiet M; Jansson L; Büscher P; Holmdahl R; Kristensson K; Olsson T J Immunol; 1996 Oct; 157(8):3518-26. PubMed ID: 8871651 [TBL] [Abstract][Full Text] [Related]
2. Resistance to the African trypanosomes is IFN-gamma dependent. Hertz CJ; Filutowicz H; Mansfield JM J Immunol; 1998 Dec; 161(12):6775-83. PubMed ID: 9862708 [TBL] [Abstract][Full Text] [Related]
3. Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. De Gee AL; Levine RF; Mansfield JM J Immunol; 1988 Jan; 140(1):283-8. PubMed ID: 3121739 [TBL] [Abstract][Full Text] [Related]
4. A Trypanosoma brucei bloodstream form mutant deficient in ornithine decarboxylase can protect against wild-type infection in mice. Mutomba MC; Li F; Gottesdiener KM; Wang CC Exp Parasitol; 1999 Feb; 91(2):176-84. PubMed ID: 9990346 [TBL] [Abstract][Full Text] [Related]
5. Independent regulation of B cell responses to surface and subsurface epitopes of African trypanosome variable surface glycoproteins. Reinitz DM; Mansfield JM J Immunol; 1988 Jul; 141(2):620-6. PubMed ID: 2454998 [TBL] [Abstract][Full Text] [Related]
6. Genetics of resistance to the African trypanosomes. V. Qualitative and quantitative differences in interferon production among susceptible and resistant mouse strains. de Gee AL; Sonnenfeld G; Mansfield JM J Immunol; 1985 Apr; 134(4):2723-6. PubMed ID: 2579155 [TBL] [Abstract][Full Text] [Related]
7. IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Hertz CJ; Mansfield JM Cell Immunol; 1999 Feb; 192(1):24-32. PubMed ID: 10066343 [TBL] [Abstract][Full Text] [Related]
8. Genetics of resistance to the African trypanosomes. III. Variant-specific antibody responses of H-2-compatible resistant and susceptible mice. Levine RF; Mansfield JM J Immunol; 1984 Sep; 133(3):1564-9. PubMed ID: 6747297 [TBL] [Abstract][Full Text] [Related]
9. Experimental murine Trypanosoma congolense infections. I. Administration of anti-IFN-gamma antibodies alters trypanosome-susceptible mice to a resistant-like phenotype. Uzonna JE; Kaushik RS; Gordon JR; Tabel H J Immunol; 1998 Nov; 161(10):5507-15. PubMed ID: 9820527 [TBL] [Abstract][Full Text] [Related]
10. Experimental African trypanosomiasis: IFN-gamma mediates early mortality. Shi M; Pan W; Tabel H Eur J Immunol; 2003 Jan; 33(1):108-18. PubMed ID: 12594839 [TBL] [Abstract][Full Text] [Related]
11. Genetics of resistance to the African trypanosomes. VII. Trypanosome virulence is not linked to variable surface glycoprotein expression. Inverso JA; De Gee AL; Mansfield JM J Immunol; 1988 Jan; 140(1):289-93. PubMed ID: 3335780 [TBL] [Abstract][Full Text] [Related]
12. The inheritance of factors controlling resistance in mice infected with Trypanosoma brucei rhodesiense. Seed JR; Sechelski J J Parasitol; 1995 Aug; 81(4):653-7. PubMed ID: 7623216 [TBL] [Abstract][Full Text] [Related]
13. Regulation of B cell responses to the variant surface glycoprotein molecule in trypanosomiasis. II. Down-regulation of idiotype expression is associated with the appearance of lymphocytes expressing antiidiotypic receptors. Theodos CM; Mansfield JM J Immunol; 1990 May; 144(10):4022-9. PubMed ID: 1970594 [TBL] [Abstract][Full Text] [Related]
14. Interleukin-12p70-dependent interferon- gamma production is crucial for resistance in African trypanosomiasis. Barkhuizen M; Magez S; Atkinson RA; Brombacher F J Infect Dis; 2007 Oct; 196(8):1253-60. PubMed ID: 17955445 [TBL] [Abstract][Full Text] [Related]
15. Characterization of T helper cell responses to the trypanosome variant surface glycoprotein. Schleifer KW; Filutowicz H; Schopf LR; Mansfield JM J Immunol; 1993 Apr; 150(7):2910-9. PubMed ID: 8454863 [TBL] [Abstract][Full Text] [Related]
16. The kinetics of gene expression and maturation of IL-1 alpha after induction with the surface coat of Trypanosoma brucei rhodesiense or lipopolysaccharide. Mathias S; Perez R; Diffley P J Immunol; 1990 Nov; 145(10):3450-5. PubMed ID: 2230129 [TBL] [Abstract][Full Text] [Related]
17. Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines. Namangala B; de Baetselier P; Brijs L; Stijlemans B; Noël W; Pays E; Carrington M; Beschin A J Infect Dis; 2000 Mar; 181(3):1110-20. PubMed ID: 10720538 [TBL] [Abstract][Full Text] [Related]
18. Probabilistic order in antigenic variation of Trypanosoma brucei. Morrison LJ; Majiwa P; Read AF; Barry JD Int J Parasitol; 2005 Aug; 35(9):961-72. PubMed ID: 16000200 [TBL] [Abstract][Full Text] [Related]
19. Altered proinflammatory cytokine production and enhanced resistance to Trypanosoma congolense infection in lymphotoxin beta-deficient mice. Okwor I; Muleme H; Jia P; Uzonna JE J Infect Dis; 2009 Aug; 200(3):361-9. PubMed ID: 19563258 [TBL] [Abstract][Full Text] [Related]
20. The modulatory influence of Trypanosoma brucei on challenge infection with Haemonchus contortus in Nigerian West African Dwarf goats segregated into weak and strong responders to the nematode. Chiejina SN; Musongong GA; Fakae BB; Behnke JM; Ngongeh LA; Wakelin D Vet Parasitol; 2005 Mar; 128(1-2):29-40. PubMed ID: 15725530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]