BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8872258)

  • 1. A model of fatigue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES.
    Giat Y; Mizrahi J; Levy M
    J Biomech Eng; 1996 Aug; 118(3):357-66. PubMed ID: 8872258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted and measured muscle forces after recoveries of differing durations following fatigue in functional electrical stimulation.
    Mizrahi J; Seelenfreund D; Isakov E; Susak Z
    Artif Organs; 1997 Mar; 21(3):236-9. PubMed ID: 9148714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study.
    Mizuno T; Takanashi Y; Yoshizaki K; Kondo M
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG and metabolite-based prediction of force in paralyzed quadriceps muscle under interrupted stimulation.
    Levin O; Mizrahi J
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):301-14. PubMed ID: 10498376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation.
    Stutzig N; Rzanny R; Moll K; Gussew A; Reichenbach JR; Siebert T
    Magn Reson Med; 2017 Jun; 77(6):2097-2106. PubMed ID: 27436629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES.
    Giat Y; Mizrahi J; Levy M
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):664-74. PubMed ID: 8244427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A
    Hureau TJ; Broxterman RM; Weavil JC; Lewis MT; Layec G; Amann M
    J Physiol; 2022 Jul; 600(13):3069-3081. PubMed ID: 35593645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in force and intracellular metabolites during fatigue of human skeletal muscle.
    Cady EB; Jones DA; Lynn J; Newham DJ
    J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P-magnetic resonance spectroscopy of the rabbit masseter muscle.
    Chang C; DeCrespigny AJ; Chew W; Alcantara M; McNeill C; Miller AJ
    Arch Oral Biol; 1994 Aug; 39(8):665-77. PubMed ID: 7980115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus magnetic resonance spectroscopy of human masseter muscle.
    Plesh O; Meyerhoff DJ; Weiner MW
    J Dent Res; 1995 Jan; 74(1):338-44. PubMed ID: 7876427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue.
    Darques JL; Bendahan D; Roussel M; Giannesini B; Tagliarini F; Le Fur Y; Cozzone PJ; Jammes Y
    J Appl Physiol (1985); 2003 Oct; 95(4):1476-84. PubMed ID: 12819224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions.
    Torvinen S; Silvennoinen M; Piitulainen H; Närväinen J; Tuunanen P; Gröhn O; Koch LG; Britton SL; Kainulainen H
    PLoS One; 2012; 7(11):e48345. PubMed ID: 23185253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo 31P NMR studies of paraplegics' muscles activated by functional electrical stimulation.
    Levy M; Kushnir T; Mizrahi J; Itzchak Y
    Magn Reson Med; 1993 Jan; 29(1):53-8. PubMed ID: 8419742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo reduction in ATP cost of contraction is not related to fatigue level in stimulated rat gastrocnemius muscle.
    Giannesini B; Izquierdo M; Le Fur Y; Cozzone PJ; Bendahan D
    J Physiol; 2001 Nov; 536(Pt 3):905-15. PubMed ID: 11691882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle fatigue: the role of metabolism.
    McCully KK; Authier B; Olive J; Clark BJ
    Can J Appl Physiol; 2002 Feb; 27(1):70-82. PubMed ID: 11880692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of knee injection on skeletal muscle metabolism and contractile force in rats.
    Galbán CJ; Ling SM; Galbán CJ; Taub DD; Gurkan I; Fishbein KW; Spencer RG
    Osteoarthritis Cartilage; 2007 May; 15(5):550-8. PubMed ID: 17157038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept.
    Chidnok W; DiMenna FJ; Fulford J; Bailey SJ; Skiba PF; Vanhatalo A; Jones AM
    Am J Physiol Regul Integr Comp Physiol; 2013 Nov; 305(9):R1085-92. PubMed ID: 24068048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting fatigue during electrically stimulated non-isometric contractions.
    Marion MS; Wexler AS; Hull ML
    Muscle Nerve; 2010 Jun; 41(6):857-67. PubMed ID: 20229581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.