These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8872258)
1. A model of fatigue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES. Giat Y; Mizrahi J; Levy M J Biomech Eng; 1996 Aug; 118(3):357-66. PubMed ID: 8872258 [TBL] [Abstract][Full Text] [Related]
2. Predicted and measured muscle forces after recoveries of differing durations following fatigue in functional electrical stimulation. Mizrahi J; Seelenfreund D; Isakov E; Susak Z Artif Organs; 1997 Mar; 21(3):236-9. PubMed ID: 9148714 [TBL] [Abstract][Full Text] [Related]
3. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study. Mizuno T; Takanashi Y; Yoshizaki K; Kondo M Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663 [TBL] [Abstract][Full Text] [Related]
4. EMG and metabolite-based prediction of force in paralyzed quadriceps muscle under interrupted stimulation. Levin O; Mizrahi J IEEE Trans Rehabil Eng; 1999 Sep; 7(3):301-14. PubMed ID: 10498376 [TBL] [Abstract][Full Text] [Related]
5. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation. Stutzig N; Rzanny R; Moll K; Gussew A; Reichenbach JR; Siebert T Magn Reson Med; 2017 Jun; 77(6):2097-2106. PubMed ID: 27436629 [TBL] [Abstract][Full Text] [Related]
6. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES. Giat Y; Mizrahi J; Levy M IEEE Trans Biomed Eng; 1993 Jul; 40(7):664-74. PubMed ID: 8244427 [TBL] [Abstract][Full Text] [Related]
7. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A Hureau TJ; Broxterman RM; Weavil JC; Lewis MT; Layec G; Amann M J Physiol; 2022 Jul; 600(13):3069-3081. PubMed ID: 35593645 [TBL] [Abstract][Full Text] [Related]
8. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. Cady EB; Jones DA; Lynn J; Newham DJ J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621 [TBL] [Abstract][Full Text] [Related]
9. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743 [TBL] [Abstract][Full Text] [Related]
10. 31P-magnetic resonance spectroscopy of the rabbit masseter muscle. Chang C; DeCrespigny AJ; Chew W; Alcantara M; McNeill C; Miller AJ Arch Oral Biol; 1994 Aug; 39(8):665-77. PubMed ID: 7980115 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus magnetic resonance spectroscopy of human masseter muscle. Plesh O; Meyerhoff DJ; Weiner MW J Dent Res; 1995 Jan; 74(1):338-44. PubMed ID: 7876427 [TBL] [Abstract][Full Text] [Related]
12. Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue. Darques JL; Bendahan D; Roussel M; Giannesini B; Tagliarini F; Le Fur Y; Cozzone PJ; Jammes Y J Appl Physiol (1985); 2003 Oct; 95(4):1476-84. PubMed ID: 12819224 [TBL] [Abstract][Full Text] [Related]
13. Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions. Torvinen S; Silvennoinen M; Piitulainen H; Närväinen J; Tuunanen P; Gröhn O; Koch LG; Britton SL; Kainulainen H PLoS One; 2012; 7(11):e48345. PubMed ID: 23185253 [TBL] [Abstract][Full Text] [Related]
14. In vivo 31P NMR studies of paraplegics' muscles activated by functional electrical stimulation. Levy M; Kushnir T; Mizrahi J; Itzchak Y Magn Reson Med; 1993 Jan; 29(1):53-8. PubMed ID: 8419742 [TBL] [Abstract][Full Text] [Related]
15. In vivo reduction in ATP cost of contraction is not related to fatigue level in stimulated rat gastrocnemius muscle. Giannesini B; Izquierdo M; Le Fur Y; Cozzone PJ; Bendahan D J Physiol; 2001 Nov; 536(Pt 3):905-15. PubMed ID: 11691882 [TBL] [Abstract][Full Text] [Related]
16. Muscle fatigue: the role of metabolism. McCully KK; Authier B; Olive J; Clark BJ Can J Appl Physiol; 2002 Feb; 27(1):70-82. PubMed ID: 11880692 [TBL] [Abstract][Full Text] [Related]
17. Effects of knee injection on skeletal muscle metabolism and contractile force in rats. Galbán CJ; Ling SM; Galbán CJ; Taub DD; Gurkan I; Fishbein KW; Spencer RG Osteoarthritis Cartilage; 2007 May; 15(5):550-8. PubMed ID: 17157038 [TBL] [Abstract][Full Text] [Related]
18. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept. Chidnok W; DiMenna FJ; Fulford J; Bailey SJ; Skiba PF; Vanhatalo A; Jones AM Am J Physiol Regul Integr Comp Physiol; 2013 Nov; 305(9):R1085-92. PubMed ID: 24068048 [TBL] [Abstract][Full Text] [Related]
19. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers. Stary CM; Hogan MC J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085 [TBL] [Abstract][Full Text] [Related]
20. Predicting fatigue during electrically stimulated non-isometric contractions. Marion MS; Wexler AS; Hull ML Muscle Nerve; 2010 Jun; 41(6):857-67. PubMed ID: 20229581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]