BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8872261)

  • 1. Automated finite element analysis of excised human femora based on precision -QCT.
    Merz B; Niederer P; Müller R; Rüegsegger P
    J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of experimental and finite element models of synthetic and cadaveric femora for pre-clinical design-analysis.
    McNamara BP; Cristofolini L; Toni A; Taylor D
    Clin Mater; 1994; 17(3):131-40. PubMed ID: 10150600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-D femoral stress analysis using CT scans and p-version FEM.
    Basu PK; Beall AG; Simmons DJ; Vannier M
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis.
    Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF
    Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of a femur to deconstruct the paradox of bone curvature.
    Jade S; Tamvada KH; Strait DS; Grosse IR
    J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of multidimensional interpolation on nonhomogeneous cancellous bone.
    Liu S; Li S; Wei N; Chang W; Hu P; Cheng X; Wang L; Chen W
    Medicine (Baltimore); 2018 Sep; 97(36):e12224. PubMed ID: 30200144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age?
    Rezaei A; Giambini H; Rossman T; Carlson KD; Yaszemski MJ; Lu L; Dragomir-Daescu D
    Ann Biomed Eng; 2017 Dec; 45(12):2847-2856. PubMed ID: 28940110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Automatic generation of 3-D finite element codes of the human femur].
    Lengsfeld M; Kaminsky J; Merz B; Franke RP
    Biomed Tech (Berl); 1994 May; 39(5):117-22. PubMed ID: 8049341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the mechanical response of the femur with uncertain elastic properties.
    Wille H; Rank E; Yosibash Z
    J Biomech; 2012 Apr; 45(7):1140-8. PubMed ID: 22417868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.