These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1068 related articles for article (PubMed ID: 8872356)
21. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction. Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685 [TBL] [Abstract][Full Text] [Related]
22. Multiple calcium channels control neurotransmitter release from rat postganglionic sympathetic nerve terminals. Smith AB; Cunnane TC J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):341-9. PubMed ID: 9080364 [TBL] [Abstract][Full Text] [Related]
23. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Hill MP; Brotchie JM Br J Pharmacol; 1999 May; 127(1):275-83. PubMed ID: 10369483 [TBL] [Abstract][Full Text] [Related]
24. Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. Villarroya M; De la Fuente MT; López MG; Gandía L; García AG Eur J Pharmacol; 1997 Feb; 320(2-3):249-57. PubMed ID: 9059861 [TBL] [Abstract][Full Text] [Related]
25. Multiple subtypes of voltage-gated calcium channel mediate transmitter release from parasympathetic neurons in the mouse bladder. Waterman SA J Neurosci; 1996 Jul; 16(13):4155-61. PubMed ID: 8753877 [TBL] [Abstract][Full Text] [Related]
26. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons. Rusin KI; Moises HC Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286 [TBL] [Abstract][Full Text] [Related]
27. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. Dobrev D; Milde AS; Andreas K; Ravens U Br J Pharmacol; 1999 May; 127(2):576-82. PubMed ID: 10385261 [TBL] [Abstract][Full Text] [Related]
28. Retinal ganglion neurons express a toxin-resistant developmentally regulated novel type of high-voltage-activated calcium channel. Rothe T; Grantyn R J Neurophysiol; 1994 Nov; 72(5):2542-6. PubMed ID: 7884480 [TBL] [Abstract][Full Text] [Related]
29. Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions. Hernández-Guijo JM; de Pascual R; García AG; Gandía L Pflugers Arch; 1998 Jun; 436(1):75-82. PubMed ID: 9560449 [TBL] [Abstract][Full Text] [Related]
30. mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons. Rusin KI; Moises HC J Neurosci; 1995 Jun; 15(6):4315-27. PubMed ID: 7540671 [TBL] [Abstract][Full Text] [Related]
31. The nonpeptide alpha-eudexp6l from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-agatoxin IVA-sensitive Ca2+ currents and synaptosomal 45Ca2+ uptake. Asakura K; Kanemasa T; Minagawa K; Kagawa K; Ninomiya M Brain Res; 1999 Mar; 823(1-2):169-76. PubMed ID: 10095023 [TBL] [Abstract][Full Text] [Related]
32. Differential effects of omega-conotoxin GVIA and MVIIC on nerve stimulation induced contractions of guinea-pig ileum and rat vas deferens. Boot JR Eur J Pharmacol; 1994 Jun; 258(1-2):155-8. PubMed ID: 7925595 [TBL] [Abstract][Full Text] [Related]
33. Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion. Turner TJ; Dunlap K Neuropharmacology; 1995 Nov; 34(11):1469-78. PubMed ID: 8606794 [TBL] [Abstract][Full Text] [Related]
34. Effects of calmodulin and Ca2+ channel blockers on omega-conotoxin GVIA binding to crude membranes from alpha1B subunit (Cav2.2) expressed BHK cells and mice brain lacking the alpha1B subunits. Wada T; Imanishi T; Kawaguchi A; Mori MX; Mori Y; Imoto K; Ichida S Neurochem Res; 2005 Aug; 30(8):1045-54. PubMed ID: 16258854 [TBL] [Abstract][Full Text] [Related]
35. Pharmacological evidence that tetraethylammonium-sensitive, iberiotoxin-insensitive K+ channels function as a negative feedback element for sympathetic neurotransmission by suppressing omega-conotoxin-GVIA-insensitive Ca2+ channels in the relaxation of rabbit facial vein. Tanaka Y; Akutsu A; Tanaka H; Horinouchi T; Tsuru H; Koike K; Shigenobu K Naunyn Schmiedebergs Arch Pharmacol; 2003 Jan; 367(1):35-42. PubMed ID: 12616339 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the type of calcium channel primarily regulating GABA exocytosis from brain nerve endings. Sitges M; Chiu LM Neurochem Res; 1995 Sep; 20(9):1073-80. PubMed ID: 8570012 [TBL] [Abstract][Full Text] [Related]
37. Effects of omega-conotoxin GVIA on autonomic neuroeffector transmission in various tissues. De Luca A; Li CG; Rand MJ; Reid JJ; Thaina P; Wong-Dusting HK Br J Pharmacol; 1990 Oct; 101(2):437-47. PubMed ID: 2175236 [TBL] [Abstract][Full Text] [Related]
38. Dihydropyridines, phenylalkylamines and benzothiazepines block N-, P/Q- and R-type calcium currents. Diochot S; Richard S; Baldy-Moulinier M; Nargeot J; Valmier J Pflugers Arch; 1995 Nov; 431(1):10-9. PubMed ID: 8584405 [TBL] [Abstract][Full Text] [Related]
39. Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations. Albillos A; García AG; Olivera B; Gandía L Pflugers Arch; 1996 Oct; 432(6):1030-8. PubMed ID: 8781197 [TBL] [Abstract][Full Text] [Related]
40. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. Randall A; Tsien RW J Neurosci; 1995 Apr; 15(4):2995-3012. PubMed ID: 7722641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]