These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8872634)

  • 1. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle.
    Balog EM; Fitts RH
    J Appl Physiol (1985); 1996 Aug; 81(2):679-85. PubMed ID: 8872634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of sarcolemma action potentials and excitability in muscle fatigue.
    Balog EM; Thompson LV; Fitts RH
    J Appl Physiol (1985); 1994 May; 76(5):2157-62. PubMed ID: 8063681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting membrane potential and intracellular [Na
    Lindinger MI; Cairns SP; Sejersted OM
    J Physiol; 2024 Jul; 602(14):3469-3487. PubMed ID: 38877870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo.
    Renaud JM; Light P
    Can J Physiol Pharmacol; 1992 Sep; 70(9):1236-46. PubMed ID: 1493591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle.
    Cairns SP; Leader JP; Higgins A; Renaud JM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1151-C1165. PubMed ID: 35385328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle fatigue in frog semitendinosus: role of intracellular pH.
    Thompson LV; Balog EM; Fitts RH
    Am J Physiol; 1992 Jun; 262(6 Pt 1):C1507-12. PubMed ID: 1616012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T; Gissel H
    Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients.
    Overgaard K; Nielsen OB; Flatman JA; Clausen T
    J Physiol; 1999 Jul; 518(Pt 1):215-25. PubMed ID: 10373703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular Na+ and K+ activities during insulin stimulation of rat soleus muscle.
    Stark RJ; O'Doherty J
    Am J Physiol; 1982 Mar; 242(3):E193-200. PubMed ID: 7039346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of reduced electrochemical Na+ gradient on contractility in skeletal muscle: role of the Na+-K+ pump.
    Overgaard K; Nielsen OB; Clausen T
    Pflugers Arch; 1997 Aug; 434(4):457-65. PubMed ID: 9211813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery.
    Juel C
    Pflugers Arch; 1986 May; 406(5):458-63. PubMed ID: 3714446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump.
    Cairns SP; Flatman JA; Clausen T
    Pflugers Arch; 1995 Oct; 430(6):909-15. PubMed ID: 8594543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trauma-induced changes of skeletal muscle membrane: decreased K+ and increased Na+ permeability.
    Hong SJ; Chang CC
    J Appl Physiol (1985); 1997 Oct; 83(4):1096-103. PubMed ID: 9338416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-K+ pump stimulation improves contractility in damaged muscle fibers.
    Clausen T
    Ann N Y Acad Sci; 2005 Dec; 1066():286-94. PubMed ID: 16533932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.