These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8872667)

  • 41. Effect of transrespiratory pressure on PETCO2-PaCO2 and ventilatory reflexes in humans.
    Banzett R; Strohl K; Geffroy B; Mead J
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):660-4. PubMed ID: 6799462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aortic body chemoreceptor responses to changes in PCO2 and PO2 in the cat.
    Lahiri S; Mulligan E; Nishino T; Mokashi A
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Oct; 47(4):858-66. PubMed ID: 41829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring of the ventilatory status of anesthetized birds of prey by using end-tidal carbon dioxide measured with a microstream capnometer.
    Desmarchelier M; Rondenay Y; Fitzgerald G; Lair S
    J Zoo Wildl Med; 2007 Mar; 38(1):1-6. PubMed ID: 17469268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selected contribution: chemoreflex responses to CO2 before and after an 8-h exposure to hypoxia in humans.
    Fatemian M; Robbins PA
    J Appl Physiol (1985); 2001 Apr; 90(4):1607-14; discussion 1606. PubMed ID: 11247968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prospective targeting and control of end-tidal CO2 and O2 concentrations.
    Slessarev M; Han J; Mardimae A; Prisman E; Preiss D; Volgyesi G; Ansel C; Duffin J; Fisher JA
    J Physiol; 2007 Jun; 581(Pt 3):1207-19. PubMed ID: 17446225
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport.
    Tingay DG; Stewart MJ; Morley CJ
    Arch Dis Child Fetal Neonatal Ed; 2005 Nov; 90(6):F523-6. PubMed ID: 15863489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An assessment of central-peripheral ventilatory chemoreflex interaction in humans.
    Clement ID; Bascom DA; Conway J; Dorrington KL; O'Connor DF; Painter R; Paterson DJ; Robbins PA
    Respir Physiol; 1992; 88(1-2):87-100. PubMed ID: 1626148
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time course of air hunger mirrors the biphasic ventilatory response to hypoxia.
    Moosavi SH; Banzett RB; Butler JP
    J Appl Physiol (1985); 2004 Dec; 97(6):2098-103. PubMed ID: 15286044
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic response of peripheral chemoreflex loop to changes in end-tidal CO2.
    Berkenbosch A; DeGoede J; Ward DS; Olievier CN; VanHartevelt J
    J Appl Physiol (1985); 1988 May; 64(5):1779-85. PubMed ID: 3134324
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of a maskless CO2-response test for sleep and infant studies.
    Naifeh KH; Severinghaus JW
    J Appl Physiol (1985); 1988 Jan; 64(1):391-6. PubMed ID: 3128528
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of different levels of hyperoxia on breathing in healthy subjects.
    Becker HF; Polo O; McNamara SG; Berthon-Jones M; Sullivan CE
    J Appl Physiol (1985); 1996 Oct; 81(4):1683-90. PubMed ID: 8904587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ventilatory response to inspired CO2 in normal and carotid body-denervated ponies.
    Klein JP; Forster HV; Bisgard GE; Kaminski RP; Pan LG; Hamilton LH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1614-22. PubMed ID: 6809719
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Air hunger and ventilation in response to hypercapnia: effects of repetition and anxiety.
    Li W; Daems E; Van de Woestijne KP; Van Diest I; Gallego J; De Peuter S; Bogaerts K; Van den Bergh O
    Physiol Behav; 2006 Jun; 88(1-2):47-54. PubMed ID: 16626764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of airway mechanoreceptors in the inhibition of inspiration during mechanical ventilation in humans.
    Simon PM; Skatrud JB; Badr MS; Griffin DM; Iber C; Dempsey JA
    Am Rev Respir Dis; 1991 Nov; 144(5):1033-41. PubMed ID: 1952428
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ventilatory responses to CO2 in the chicken: intrapulmonary and systemic chemoreceptors.
    Osborne JL; Mitchell GS; Powell F
    Respir Physiol; 1977 Aug; 30(3):369-82. PubMed ID: 897377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery.
    Suominen PK; Stayer S; Wang W; Chang AC
    ASAIO J; 2007; 53(6):670-4. PubMed ID: 18043144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arterial to end-tidal carbon dioxide difference during craniotomy in severely head-injured patients.
    Ferber J; Juniewicz HM; Lechowicz-Głogowska EB; Pieniek R; Wroński J
    Folia Med Cracov; 2001; 42(4):141-52. PubMed ID: 12815773
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CO2 rebreathing model in COPD: blood-to-gas equilibration.
    Loeppky JA; Icenogle MV; Caprihan A; Vidal Melo MF; Altobelli SA
    Eur J Appl Physiol; 2006 Nov; 98(5):450-60. PubMed ID: 16960726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypercapnic ventilatory response in humans before, during, and after 23 days of low level CO2 exposure.
    Elliott AR; Prisk GK; Schöllmann C; Hoffmann U
    Aviat Space Environ Med; 1998 Apr; 69(4):391-6. PubMed ID: 9561287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.