These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8873121)

  • 1. Effects of glutamate receptor agonists on presumed presynaptic Ca(2+)-signals in juvenile rat hippocampal area CA1.
    Alici K; Müller W; Heinemann U
    Neurosci Lett; 1996 Aug; 214(1):17-20. PubMed ID: 8873121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of glutamate receptor agonists and antagonists on Ca2+ uptake in rat hippocampal slices lesioned by glucose deprivation or by kainate.
    Alici K; Gloveli T; Schmitz D; Heinemann U
    Neuroscience; 1997 Mar; 77(1):97-109. PubMed ID: 9044378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of effects induced by toxic applications of kainate and glutamate by glucose deprivation on area CA1 of rat hippocampal slices.
    Alici K; Gloveli T; Weber-Luxenburger G; Motine V; Heinemann U
    Brain Res; 1996 Oct; 738(1):109-20. PubMed ID: 8949933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of dopamine and noradrenaline release and of intracellular Ca2+ concentration by presynaptic glutamate receptors in hippocampus.
    Malva JO; Carvalho AP; Carvalho CM
    Br J Pharmacol; 1994 Dec; 113(4):1439-47. PubMed ID: 7534187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glucose deprivation in area CA1 of hippocampal slices from adult and juvenile rats.
    Alici K; Weber-Luxenburger G; Heinemann U
    Brain Res Dev Brain Res; 1998 Apr; 107(1):71-80. PubMed ID: 9602066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus.
    Kamiya H; Ozawa S
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):833-45. PubMed ID: 9596803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging NMDA- and kainate-induced intrinsic optical signals from the hippocampal slice.
    Andrew RD; Adams JR; Polischuk TM
    J Neurophysiol; 1996 Oct; 76(4):2707-17. PubMed ID: 8899640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area.
    Martin D; Bustos GA; Bowe MA; Bray SD; Nadler JV
    J Neurochem; 1991 May; 56(5):1647-55. PubMed ID: 1672884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological properties of excitatory amino acid induced changes in extracellular calcium concentration in rat hippocampal slices.
    Arens J; Stabel J; Heinemann U
    Can J Physiol Pharmacol; 1992; 70 Suppl():S194-205. PubMed ID: 1295671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential role of two Ca(2+)-permeable non-NMDA glutamate channels in rat retinal ganglion cells: kainate-induced cytoplasmic and nuclear Ca2+ signals.
    Leinders-Zufall T; Rand MN; Waxman SG; Kocsis JD
    J Neurophysiol; 1994 Nov; 72(5):2503-16. PubMed ID: 7884475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.
    Pozzo-Miller LD; Inoue T; Murphy DD
    J Neurophysiol; 1999 Mar; 81(3):1404-11. PubMed ID: 10085365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons: fast kinetics and mechanisms.
    Reichling DB; MacDermott AB
    J Physiol; 1993 Sep; 469():67-88. PubMed ID: 7505825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of presynaptic calcium influx by metabotropic glutamate receptor agonists in neonatal rat hippocampus.
    Yoshino M; Kamiya H
    Brain Res; 1995 Oct; 695(2):179-85. PubMed ID: 8556329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular survival pathways against glutamate receptor agonist excitotoxicity in cultured neurons. Intracellular calcium responses.
    Marini AM; Ueda Y; June CH
    Ann N Y Acad Sci; 1999; 890():421-37. PubMed ID: 10668447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine antagonists combined with 4-aminopyridine cause partial recovery of synaptic transmission in low Ca media.
    Schubert P; Heinemann U
    Exp Brain Res; 1988; 70(3):539-49. PubMed ID: 2838316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of presynaptic calcium currents by hypoxia in hippocampal tissue slices.
    Young JN; Somjen GG
    Brain Res; 1992 Feb; 573(1):70-6. PubMed ID: 1315607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death.
    Ferreira IL; Duarte CB; Carvalho AP
    Eur J Pharmacol; 1996 Apr; 302(1-3):153-62. PubMed ID: 8791003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of neurones expressing inwardly rectifying and Ca(2+)-permeable AMPA receptors in rat hippocampal slices.
    Isa T; Itazawa S; Iino M; Tsuzuki K; Ozawa S
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):719-33. PubMed ID: 8815206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes.
    Giovannucci DR; Stuenkel EL
    Neuroendocrinology; 1995 Aug; 62(2):111-22. PubMed ID: 8584110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and functional properties of glutamate receptors in the leech central nervous system.
    Dierkes PW; Hochstrate P; Schlue WR
    J Neurophysiol; 1996 Jun; 75(6):2312-21. PubMed ID: 8793744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.