These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8873447)

  • 1. A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15.
    Cost GJ; Boeke JD
    Yeast; 1996 Aug; 12(10):939-41. PubMed ID: 8873447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MET15 as a visual selection marker for Candida albicans.
    Viaene J; Tiels P; Logghe M; Dewaele S; Martinet W; Contreras R
    Yeast; 2000 Sep; 16(13):1205-15. PubMed ID: 10992284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the illusion of auxotrophy: met15Δ yeast cells can grow on inorganic sulfur, thanks to the previously uncharacterized homocysteine synthase Yll058w.
    Van Oss SB; Parikh SB; Castilho Coelho N; Wacholder A; Belashov I; Zdancewicz S; Michaca M; Xu J; Kang YP; Ward NP; Yoon SJ; McCourt KM; McKee J; Ideker T; VanDemark AP; DeNicola GM; Carvunis AR
    J Biol Chem; 2022 Dec; 298(12):102697. PubMed ID: 36379252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupting the methionine biosynthetic pathway in Candida guilliermondii: characterization of the MET2 gene as counter-selectable marker.
    Obando Montoya EJ; Mélin C; Blanc N; Lanoue A; Foureau E; Boudesocque L; Prie G; Simkin AJ; Crèche J; Atehortùa L; Giglioli-Guivarc'h N; Clastre M; Courdavault V; Papon N
    Yeast; 2014 Jul; 31(7):243-51. PubMed ID: 24700391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics and relationships of mercury-resistant mutants and methionine auxotrophs of yeast.
    Singh A; Sherman F
    J Bacteriol; 1974 Jun; 118(3):911-8. PubMed ID: 4364332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel method for screening Saccharomyces cerevisiae mutants with increased sulfur-containing compounds: color-based selection of colonies using the met30 strain.
    Tarutina MG; Dutova TA; Yezhova IE; Nishiuchi H; Sineoky SP
    J Biosci Bioeng; 2012 Dec; 114(6):619-21. PubMed ID: 22889581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Genes in
    Bae NS; Seberg AP; Carroll LP; Swanson MJ
    G3 (Bethesda); 2017 Apr; 7(4):1061-1084. PubMed ID: 28209762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonselective colony-color assays for HIS3, LEU2, LYS2, TRP1 and URA3 in ade2 yeast strains using media with limiting nutrients.
    Myers TA; Nickoloff JA
    Biotechniques; 1999 May; 26(5):850-4. PubMed ID: 10337474
    [No Abstract]   [Full Text] [Related]  

  • 10. Cloning and characterization of the Kluyveromyces lactis homocysteine synthase gene.
    Brzywczy J; Paszewski A
    Yeast; 1999 Sep; 15(13):1403-9. PubMed ID: 10509022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and physiological characterization of met15 mutants of Saccharomyces cerevisiae: a selective system for forward and reverse mutations.
    Singh A; Sherman F
    Genetics; 1975 Sep; 81(1):75-97. PubMed ID: 1107143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed.
    Paszewski A; Ono BI
    Curr Genet; 1992 Oct; 22(4):273-5. PubMed ID: 1394507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular genetics of met 17 and met 25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene.
    D'Andrea R; Surdin-Kerjan Y; Pure G; Cherest H
    Mol Gen Genet; 1987 Apr; 207(1):165-70. PubMed ID: 3299001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae.
    Ono B; Ishii N; Fujino S; Aoyama I
    Appl Environ Microbiol; 1991 Nov; 57(11):3183-6. PubMed ID: 1781681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence of the SAC2 gene of Saccharomyces cerevisiae.
    Kölling R; Lee A; Chen EY; Botstein D
    Yeast; 1994 Sep; 10(9):1211-6. PubMed ID: 7754710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae expresses two genes encoding isozymes of methylenetetrahydrofolate reductase.
    Raymond RK; Kastanos EK; Appling DR
    Arch Biochem Biophys; 1999 Dec; 372(2):300-8. PubMed ID: 10600168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of the SEC1 gene of Saccharomyces cerevisiae: subcellular distribution of a protein required for yeast protein secretion.
    Egerton M; Zueco J; Boyd A
    Yeast; 1993 Jul; 9(7):703-13. PubMed ID: 8368004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae.
    Elledge SJ; Davis RW
    Gene; 1988 Oct; 70(2):303-12. PubMed ID: 3063604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Enzymol; 2013; 533():103-31. PubMed ID: 24182920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of gene encoding a putative RNA-helicase, homologous to SKI2, in chromosome VII of Saccharomyces cerevisiae.
    Martegani E; Vanoni M; Mauri I; Rudoni S; Saliola M; Alberghina L
    Yeast; 1997 Mar; 13(4):391-7. PubMed ID: 9133744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.