These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 8873609)
1. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction. Kazanskaya I; Lexa D; Bruschi M; Chottard G Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609 [TBL] [Abstract][Full Text] [Related]
2. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3. Schlereth DD; Fernández VM; Mäntele W Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427 [TBL] [Abstract][Full Text] [Related]
3. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767 [TBL] [Abstract][Full Text] [Related]
4. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3. Ma JG; Zhang J; Franco R; Jia SL; Moura I; Moura JJ; Kroneck PM; Shelnutt JA Biochemistry; 1998 Sep; 37(36):12431-42. PubMed ID: 9730815 [TBL] [Abstract][Full Text] [Related]
5. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies. Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652 [TBL] [Abstract][Full Text] [Related]
6. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528 [TBL] [Abstract][Full Text] [Related]
7. Specific binding of CO to tetraheme cytochrome c3. Takayama Y; Kobayashi Y; Yahata N; Saitoh T; Hori H; Ikegami T; Akutsu H Biochemistry; 2006 Mar; 45(10):3163-9. PubMed ID: 16519511 [TBL] [Abstract][Full Text] [Related]
8. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012 [TBL] [Abstract][Full Text] [Related]
9. Structural and kinetic studies of the Y73E mutant of octaheme cytochrome c3 (Mr = 26 000) from Desulfovibrio desulfuricans Norway. Aubert C; Giudici-Orticoni MT; Czjzek M; Haser R; Bruschi M; Dolla A Biochemistry; 1998 Feb; 37(8):2120-30. PubMed ID: 9485359 [TBL] [Abstract][Full Text] [Related]
10. Redox chemistry of low-pH forms of tetrahemic cytochrome c3. Santos M; Dos Santos MM; Gonçalves ML; Costa C; Romão JC; Moura JJ J Inorg Biochem; 2006 Dec; 100(12):2009-16. PubMed ID: 17084898 [TBL] [Abstract][Full Text] [Related]
11. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3. Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516 [TBL] [Abstract][Full Text] [Related]
12. Active site structure and dynamics of cytochrome c3 from Desulfovibrio gigas immobilized on electrodes. Simaan AJ; Murgida DH; Hildebrandt P Biopolymers; 2002; 67(4-5):331-4. PubMed ID: 12012460 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a proximal histidine interaction in the structure of cytochromes c in solution: a resonance Raman study. Othman S; Richaud P; Verméglio A; Desbois A Biochemistry; 1996 Jul; 35(28):9224-34. PubMed ID: 8703928 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy. Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus. Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589 [TBL] [Abstract][Full Text] [Related]
16. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods. Dodson ED; Zhao XJ; Caughey WS; Elliott CM Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214 [TBL] [Abstract][Full Text] [Related]
17. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure. Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869 [TBL] [Abstract][Full Text] [Related]
18. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Blackledge MJ; Guerlesquin F; Marion D Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations. Soares CM; Martel PJ; Mendes J; Carrondo MA Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states. Brennan L; Turner DL; Messias AC; Teodoro ML; LeGall J; Santos H; Xavier AV J Mol Biol; 2000 Apr; 298(1):61-82. PubMed ID: 10756105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]