These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 8873761)
1. Patterns of distal-less gene expression and inductive interactions in the head of the direct developing frog Eleutherodactylus coqui. Fang H; Elinson RP Dev Biol; 1996 Oct; 179(1):160-72. PubMed ID: 8873761 [TBL] [Abstract][Full Text] [Related]
2. Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression. Kerney R; Gross JB; Hanken J Evol Dev; 2010; 12(4):373-82. PubMed ID: 20618433 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary alteration in anterior patterning: otx2 expression in the direct developing frog Eleutherodactylus coqui. Fang H; Elinson RP Dev Biol; 1999 Jan; 205(2):233-9. PubMed ID: 9917359 [TBL] [Abstract][Full Text] [Related]
4. xPitx1 plays a role in specifying cement gland and head during early Xenopus development. Chang W; KhosrowShahian F; Chang R; Crawford MJ Genesis; 2001 Feb; 29(2):78-90. PubMed ID: 11170348 [TBL] [Abstract][Full Text] [Related]
5. Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation. Elinson RP; Walton Z; Nath K J Exp Zool B Mol Dev Evol; 2008 Nov; 310(7):588-95. PubMed ID: 18668545 [TBL] [Abstract][Full Text] [Related]
6. Gene expression reveals unique skeletal patterning in the limb of the direct-developing frog, Eleutherodactylus coqui. Kerney R; Hanken J Evol Dev; 2008; 10(4):439-48. PubMed ID: 18638321 [TBL] [Abstract][Full Text] [Related]
7. Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui. Schlosser G; Kintner C; Northcutt RG Dev Biol; 1999 Sep; 213(2):354-69. PubMed ID: 10479453 [TBL] [Abstract][Full Text] [Related]
8. Initiation of anterior head-specific gene expression in uncommitted ectoderm of Xenopus laevis by ammonium chloride. Mathers PH; Miller A; Doniach T; Dirksen ML; Jamrich M Dev Biol; 1995 Oct; 171(2):641-54. PubMed ID: 7556943 [TBL] [Abstract][Full Text] [Related]
9. Leg development in a frog without a tadpole (Eleutherodactylus coqui). Elinson RP J Exp Zool; 1994 Oct; 270(2):202-10. PubMed ID: 7964555 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui. Jennings DH; Hanken J Gen Comp Endocrinol; 1998 Aug; 111(2):225-32. PubMed ID: 9679094 [TBL] [Abstract][Full Text] [Related]
11. Novel regulation of yolk utilization by thyroid hormone in embryos of the direct developing frog Eleutherodactylus coqui. Singamsetty S; Elinson RP Evol Dev; 2010; 12(5):437-48. PubMed ID: 20883213 [TBL] [Abstract][Full Text] [Related]
12. Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Buchholz DR; Singamsetty S; Karadge U; Williamson S; Langer CE; Elinson RP Dev Dyn; 2007 May; 236(5):1259-72. PubMed ID: 17436277 [TBL] [Abstract][Full Text] [Related]
13. A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning. Sive H; Bradley L Dev Dyn; 1996 Mar; 205(3):265-80. PubMed ID: 8850563 [TBL] [Abstract][Full Text] [Related]
14. Conservation of Pitx1 expression during amphibian limb morphogenesis. Chang WY; Khosrowshahian F; Wolanski M; Marshall R; McCormick W; Perry S; Crawford MJ Biochem Cell Biol; 2006 Apr; 84(2):257-62. PubMed ID: 16609707 [TBL] [Abstract][Full Text] [Related]
15. Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae). Jermakowicz WJ; Dorsey DA; Brown AL; Wojciechowski K; Giscombe CL; Graves BM; Summers CH; Ten Eyck GR J Morphol; 2004 Aug; 261(2):225-48. PubMed ID: 15216526 [TBL] [Abstract][Full Text] [Related]
16. Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans. Kerney R; Meegaskumbura M; Manamendra-Arachchi K; Hanken J J Morphol; 2007 Aug; 268(8):715-25. PubMed ID: 17538972 [TBL] [Abstract][Full Text] [Related]
17. Ontogeny of central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui. Ten Eyck GR; Jermakowicz WJ; Chinn AF; Summers CH Anat Embryol (Berl); 2005 Oct; 210(3):221-33. PubMed ID: 16151854 [TBL] [Abstract][Full Text] [Related]
18. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount immunohistochemistry. Hanken J; Klymkowsky MW; Summers CH; Seufert DW; Ingebrigtsen N J Morphol; 1992 Jan; 211(1):95-118. PubMed ID: 1371162 [TBL] [Abstract][Full Text] [Related]
19. Status of RNAs, localized in Xenopus laevis oocytes, in the frogs Rana pipiens and Eleutherodactylus coqui. Nath K; Boorech JL; Beckham YM; Burns MM; Elinson RP J Exp Zool B Mol Dev Evol; 2005 Jan; 304(1):28-39. PubMed ID: 15515051 [TBL] [Abstract][Full Text] [Related]
20. Expression of cyclin D1, cyclin D2, and N-myc in embryos of the direct developing frog Eleutherodactylus coqui, with a focus on limbs. Nath K; Fisher C; Elinson RP Gene Expr Patterns; 2013; 13(5-6):142-9. PubMed ID: 23473789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]