These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 8873767)
1. Cytoplasmic polyadenylation of activin receptor mRNA and the control of pattern formation in Xenopus development. Simon R; Wu L; Richter JD Dev Biol; 1996 Oct; 179(1):239-50. PubMed ID: 8873767 [TBL] [Abstract][Full Text] [Related]
2. zALK-8, a novel type I serine/threonine kinase receptor, is expressed throughout early zebrafish development. Yelick PC; Abduljabbar TS; Stashenko P Dev Dyn; 1998 Apr; 211(4):352-61. PubMed ID: 9566954 [TBL] [Abstract][Full Text] [Related]
3. Embryonic expression and functional analysis of a Xenopus activin receptor. Hemmati-Brivanlou A; Wright DA; Melton DA Dev Dyn; 1992 May; 194(1):1-11. PubMed ID: 1384808 [TBL] [Abstract][Full Text] [Related]
4. Translational activation and cytoplasmic polyadenylation of FGF receptor-1 are independently regulated during Xenopus oocyte maturation. Culp PA; Musci TJ Dev Biol; 1998 Jan; 193(1):63-76. PubMed ID: 9466888 [TBL] [Abstract][Full Text] [Related]
5. Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Stern CD; Yu RT; Kakizuka A; Kintner CR; Mathews LS; Vale WW; Evans RM; Umesono K Dev Biol; 1995 Nov; 172(1):192-205. PubMed ID: 7589799 [TBL] [Abstract][Full Text] [Related]
6. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Barkoff AF; Dickson KS; Gray NK; Wickens M Dev Biol; 2000 Apr; 220(1):97-109. PubMed ID: 10720434 [TBL] [Abstract][Full Text] [Related]
7. Control of cell differentiation and morphogenesis in amphibian development. Fukui A; Asashima M Int J Dev Biol; 1994 Jun; 38(2):257-66. PubMed ID: 7981034 [TBL] [Abstract][Full Text] [Related]
8. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm. Kikkawa M; Yamazaki M; Izutsu Y; Maéno M Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858 [TBL] [Abstract][Full Text] [Related]
9. Translational control of activin in Xenopus laevis embryos. Klein PS; Melton DA Dev Genet; 1995; 17(1):55-64. PubMed ID: 7554495 [TBL] [Abstract][Full Text] [Related]
10. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. Cao Q; Richter JD EMBO J; 2002 Jul; 21(14):3852-62. PubMed ID: 12110596 [TBL] [Abstract][Full Text] [Related]
11. Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Simon R; Richter JD Mol Cell Biol; 1994 Dec; 14(12):7867-75. PubMed ID: 7969126 [TBL] [Abstract][Full Text] [Related]
12. The role of cytoplasmic polyadenylation element sequence on mRNA abundance during porcine embryogenesis and parthenogenetic development. Dobbs KB; Spollen WG; Springer G; Prather RS Mol Reprod Dev; 2010 Aug; 77(8):699-709. PubMed ID: 20626047 [TBL] [Abstract][Full Text] [Related]
13. Cloning of rat type I receptor cDNA for bone morphogenetic protein-2 and bone morphogenetic protein-4, and the localization compared with that of the ligands. Ikeda T; Takahashi H; Suzuki A; Ueno N; Yokose S; Yamaguchi A; Yoshiki S Dev Dyn; 1996 Jul; 206(3):318-29. PubMed ID: 8896987 [TBL] [Abstract][Full Text] [Related]
14. Involvement of NF-kappaB associated proteins in FGF-mediated mesoderm induction. Beck CW; Sutherland DJ; Woodland HR Int J Dev Biol; 1998 Jan; 42(1):67-77. PubMed ID: 9496788 [TBL] [Abstract][Full Text] [Related]
15. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis. Chen Y; Whitaker LL; Ramsdell AF Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning of Xenopus activin type I receptor and the analysis of its expression during embryogenesis. Kondo M; Semba K; Shiokawa K; Yamamoto T Biochem Biophys Res Commun; 1996 Jan; 218(2):549-55. PubMed ID: 8561794 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of translation and cytoplasmic polyadenylation by the Xenopus c-mycI 3'-untranslated region. Fraser SD; Browder LW Differentiation; 1997 Nov; 62(2):51-62. PubMed ID: 9404000 [TBL] [Abstract][Full Text] [Related]
18. Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Piepenburg O; Grimmer D; Williams PH; Smith JC Development; 2004 Oct; 131(20):4977-86. PubMed ID: 15371302 [TBL] [Abstract][Full Text] [Related]
19. Cytoplasmic mRNA polyadenylation and translation assays. Piqué M; López JM; Méndez R Methods Mol Biol; 2006; 322():183-98. PubMed ID: 16739724 [TBL] [Abstract][Full Text] [Related]
20. Roles for cytoplasmic polyadenylation in cell cycle regulation. Read RL; Norbury CJ J Cell Biochem; 2002; 87(3):258-65. PubMed ID: 12397607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]