These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8874012)

  • 1. Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations.
    Ladha S; Mackie AR; Harvey LJ; Clark DC; Lea EJ; Brullemans M; Duclohier H
    Biophys J; 1996 Sep; 71(3):1364-73. PubMed ID: 8874012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol.
    Armah CN; Mackie AR; Roy C; Price K; Osbourn AE; Bowyer P; Ladha S
    Biophys J; 1999 Jan; 76(1 Pt 1):281-90. PubMed ID: 9876141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Optical and Electrical Measurements in Artificial Membranes: Lateral Diffusion of Lipids and Channel Forming Peptides in Planar Bilayers.
    Duclohier H; Helluin O; Lea E; Mackie AR; Ladha S
    Biol Proced Online; 1998 May; 1():81-91. PubMed ID: 12734600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral diffusion and conductance properties of a fluorescein-labelled alamethicin in planar lipid bilayers.
    Helluin O; Dugast JY; Molle G; Mackie AR; Ladha S; Duclohier H
    Biochim Biophys Acta; 1997 Dec; 1330(2):284-92. PubMed ID: 9408182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and dynamics of NBD-labeled lipids in membranes analyzed by fluorescence recovery after photobleaching.
    Pucadyil TJ; Mukherjee S; Chattopadhyay A
    J Phys Chem B; 2007 Mar; 111(8):1975-83. PubMed ID: 17286426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alamethicin channel conductance modified by lipid charge.
    Aguilella VM; Bezrukov SM
    Eur Biophys J; 2001 Aug; 30(4):233-41. PubMed ID: 11548125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceramide-mediation of diffusion in supported lipid bilayers.
    Hossain M; Blanchard GJ
    Chem Phys Lipids; 2021 Aug; 238():105090. PubMed ID: 33971138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrogen bonding on the rotational and translational dynamics of a headgroup-bound chromophore in bilayer lipid membranes.
    Greiner AJ; Pillman HA; Worden RM; Blanchard GJ; Ofoli RY
    J Phys Chem B; 2009 Oct; 113(40):13263-8. PubMed ID: 19761197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids.
    Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA
    Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH modulation of transport properties of alamethicin oligomers inserted in zwitterionic-based artificial lipid membranes.
    Chiriac R; Luchian T
    Biophys Chem; 2007 Nov; 130(3):139-47. PubMed ID: 17888562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical measurement of electroneutral fluxes of divalent cations through charged planar phospholipid membranes.
    Moronne MM; Cohen JA
    Biochim Biophys Acta; 1982 Jun; 688(3):793-7. PubMed ID: 6288093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Percolation properties of two-component, two-phase phospholipid bilayers.
    Vaz WL
    Mol Membr Biol; 1995; 12(1):39-43. PubMed ID: 7767380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.
    Oliver AE; Deamer DW
    Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.
    Urbina JA; Moreno B; Arnold W; Taron CH; Orlean P; Oldfield E
    Biophys J; 1998 Sep; 75(3):1372-83. PubMed ID: 9726938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 2001 Jan; 80(1):331-46. PubMed ID: 11159406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching.
    Giffard CJ; Ladha S; Mackie AR; Clark DC; Sanders D
    J Membr Biol; 1996 Jun; 151(3):293-300. PubMed ID: 8661516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer.
    Pedersen S; Jørgensen K; Baekmark TR; Mouritsen OG
    Biophys J; 1996 Aug; 71(2):554-60. PubMed ID: 8842195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of a fluorescent phospholipid between fluid bilayers: dependence on host lipid acyl chains.
    Feigenson GW
    Biophys J; 1997 Dec; 73(6):3112-21. PubMed ID: 9414223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field-induced concentration gradients in planar supported bilayers.
    Groves JT; Boxer SG
    Biophys J; 1995 Nov; 69(5):1972-5. PubMed ID: 8580340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.