BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8874040)

  • 1. Designing inhibitors of the metalloproteinase superfamily: comparative analysis of representative structures.
    Dhanaraj V; Ye QZ; Johnson LL; Hupe DJ; Ortwine DF; Dunbar JB; Rubin JR; Pavlovsky A; Humblet C; Blundell TL
    Drug Des Discov; 1996 Apr; 13(3-4):3-14. PubMed ID: 8874040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily.
    Dhanaraj V; Ye QZ; Johnson LL; Hupe DJ; Ortwine DF; Dunbar JB; Rubin JR; Pavlovsky A; Humblet C; Blundell TL
    Structure; 1996 Apr; 4(4):375-86. PubMed ID: 8740360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases.
    Stöcker W; Grams F; Baumann U; Reinemer P; Gomis-Rüth FX; McKay DB; Bode W
    Protein Sci; 1995 May; 4(5):823-40. PubMed ID: 7663339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrospective analysis of a secondary structure prediction: the catalytic domain of matrix metalloproteinases.
    Hodgkin EE; Gillman IC; Gilbert RJ
    Protein Sci; 1994 Jun; 3(6):984-6. PubMed ID: 8069228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme.
    Becker JW; Marcy AI; Rokosz LL; Axel MG; Burbaum JJ; Fitzgerald PM; Cameron PM; Esser CK; Hagmann WK; Hermes JD
    Protein Sci; 1995 Oct; 4(10):1966-76. PubMed ID: 8535233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor.
    Nar H; Werle K; Bauer MM; Dollinger H; Jung B
    J Mol Biol; 2001 Sep; 312(4):743-51. PubMed ID: 11575929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Matrix metalloproteinases and their biological functions].
    Solov'eva NI
    Bioorg Khim; 1998 Apr; 24(4):245-55. PubMed ID: 9612566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the substrate specificity of bone morphogenetic protein 1/tolloid-like metalloproteases.
    Mac Sweeney A; Gil-Parrado S; Vinzenz D; Bernardi A; Hein A; Bodendorf U; Erbel P; Logel C; Gerhartz B
    J Mol Biol; 2008 Dec; 384(1):228-39. PubMed ID: 18824173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the highly selective inhibition of MMP-13.
    Engel CK; Pirard B; Schimanski S; Kirsch R; Habermann J; Klingler O; Schlotte V; Weithmann KU; Wendt KU
    Chem Biol; 2005 Feb; 12(2):181-9. PubMed ID: 15734645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs.
    Cuniasse P; Devel L; Makaritis A; Beau F; Georgiadis D; Matziari M; Yiotakis A; Dive V
    Biochimie; 2005; 87(3-4):393-402. PubMed ID: 15781327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes.
    Terp GE; Christensen IT; Jørgensen FS
    J Biomol Struct Dyn; 2000 Jun; 17(6):933-46. PubMed ID: 10949161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermolysin and mitochondrial processing peptidase: how far structure-functional convergence goes.
    Makarova KS; Grishin NV
    Protein Sci; 1999 Nov; 8(11):2537-40. PubMed ID: 10595562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of novel zinc-binding groups for use in matrix metalloproteinase inhibitors.
    Puerta DT; Cohen SM
    Inorg Chem; 2003 Jun; 42(11):3423-30. PubMed ID: 12767177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding.
    Lingott T; Schleberger C; Gutiérrez JM; Merfort I
    Biochemistry; 2009 Jul; 48(26):6166-74. PubMed ID: 19485419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure.
    Lang R; Kocourek A; Braun M; Tschesche H; Huber R; Bode W; Maskos K
    J Mol Biol; 2001 Sep; 312(4):731-42. PubMed ID: 11575928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor.
    Lovejoy B; Cleasby A; Hassell AM; Longley K; Luther MA; Weigl D; McGeehan G; McElroy AB; Drewry D; Lambert MH
    Science; 1994 Jan; 263(5145):375-7. PubMed ID: 8278810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor.
    Moy FJ; Chanda PK; Chen JM; Cosmi S; Edris W; Levin JI; Powers R
    J Mol Biol; 2000 Sep; 302(3):671-89. PubMed ID: 10986126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors.
    Floquet N; Marechal JD; Badet-Denisot MA; Robert CH; Dauchez M; Perahia D
    FEBS Lett; 2006 Oct; 580(22):5130-6. PubMed ID: 16962102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes.
    Chen L; Rydel TJ; Gu F; Dunaway CM; Pikul S; Dunham KM; Barnett BL
    J Mol Biol; 1999 Oct; 293(3):545-57. PubMed ID: 10543949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design in silico, synthesis and binding evaluation of a carbohydrate-based scaffold for structurally novel inhibitors of matrix metalloproteinases.
    Fragai M; Nativi C; Richichi B; Venturi C
    Chembiochem; 2005 Aug; 6(8):1345-9. PubMed ID: 15977273
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.