These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8874222)

  • 21. Analysis of mutant NADH-cytochrome b5 reductase: apparent "type III" methemoglobinemia can be explained as type I with an unstable reductase.
    Nagai T; Shirabe K; Yubisui T; Takeshita M
    Blood; 1993 Feb; 81(3):808-14. PubMed ID: 8427971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis.
    Aalfs CM; Salieb-Beugelaar GB; Wanders RJ; Mannens MM; Wijburg FA
    Hum Mutat; 2000; 16(1):18-22. PubMed ID: 10874300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b(5) reductase: an aid to determine recessive congenital methemoglobinemia status in an infant.
    Percy MJ; Crowley LJ; Roper D; Vulliamy TJ; Layton DM; Barber MJ
    Blood Cells Mol Dis; 2006; 36(1):81-90. PubMed ID: 16310381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterologous expression of enzymopenic methemoglobinemia variants using a novel NADH:cytochrome c reductase fusion protein.
    Davis CA; Barber MJ
    Protein Expr Purif; 2003 Jul; 30(1):43-54. PubMed ID: 12821320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site.
    Bewley MC; Davis CA; Marohnic CC; Taormina D; Barber MJ
    Biochemistry; 2003 Nov; 42(45):13145-51. PubMed ID: 14609324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A novel point mutation in NADH-cytochrome b5 reductase gene].
    Wang Y; Wu Y; Yang W
    Zhonghua Xue Ye Xue Za Zhi; 1999 Oct; 20(10):521-3. PubMed ID: 11721397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of flavin-binding motif amino acid mutations in the NADH-cytochrome b5 reductase catalytic domain on protein stability and catalysis.
    Kimura S; Nishida H; Iyanagi T
    J Biochem; 2001 Oct; 130(4):481-90. PubMed ID: 11574067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*.
    Davis CA; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2004 Nov; 431(2):233-44. PubMed ID: 15488472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Congenital Recessive Methemoglobinemia Revealed in Adulthood: Description of a New Mutation in Cytochrome b5 Reductase Gene.
    Forestier A; Pissard S; Cretet J; Mambie A; Pascal L; Cliquennois M; Cambier N; Rose C
    Hemoglobin; 2015; 39(6):438-41. PubMed ID: 26291966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recessive hereditary methemoglobinemia: two novel mutations in the NADH-cytochrome b5 reductase gene.
    Fermo E; Bianchi P; Vercellati C; Marcello AP; Garatti M; Marangoni O; Barcellini W; Zanella A
    Blood Cells Mol Dis; 2008; 41(1):50-5. PubMed ID: 18343696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymopenic hereditary methemoglobinemia.
    Jaffé ER
    Haematologia (Budap); 1982 Dec; 15(4):389-99. PubMed ID: 6764628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymopenic hereditary methemoglobinemia: a clinical/biochemical classification.
    Jaffé ER
    Blood Cells; 1986; 12(1):81-90. PubMed ID: 3539237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Arginine-glutamine replacement at residue 57 of NADH-cytochrome b5 reductase in Chinese hereditary methemoglobinemia].
    Huang C; Xie Y; Wang Y; Wu Y; Ye Y; Zhu Z
    Zhonghua Xue Ye Xue Za Zhi; 1997 Apr; 18(4):200-3. PubMed ID: 15622768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of concentration of cytosolic NADH-cytochrome b5 reductase in erythrocytes from normal Chinese adults, neonates and patients with hereditary methemoglobinemia by double-antibody sandwich ELISA.
    Lan F; Tang Y; Huang C; Zhu Z
    Acta Haematol; 1998; 100(1):44-8. PubMed ID: 9691146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel L218P mutation in NADH-cytochrome b5 reductase associated with type I recessive congenital methemoglobinemia.
    Arikoglu T; Yarali N; Kara A; Bay A; Bozkaya IO; Tunc B; Percy MJ
    Pediatr Hematol Oncol; 2009; 26(5):381-5. PubMed ID: 19579085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analysis of NADH-cytochrome b5 reductase in relation to hereditary methemoglobinemia.
    Yubisui T; Murakami K; Shirabe K; Takeshita M; Zenno S; Tomatsu S; Fukumaki Y
    Prog Clin Biol Res; 1989; 319():107-19; discussion 120-1. PubMed ID: 2695933
    [No Abstract]   [Full Text] [Related]  

  • 37. Molecular basis of two novel mutations found in type I methemoglobinemia.
    Lorenzo FR; Phillips JD; Nussenzveig R; Lingam B; Koul PA; Schrier SL; Prchal JT
    Blood Cells Mol Dis; 2011 Apr; 46(4):277-81. PubMed ID: 21349748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-level expression in Escherichia coli of the soluble, catalytic domain of rat hepatic cytochrome b5 reductase.
    Barber MJ; Quinn GB
    Protein Expr Purif; 1996 Aug; 8(1):41-7. PubMed ID: 8812833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Hereditary methemoglobinemias].
    Beauvais P
    Arch Pediatr; 2000 May; 7(5):513-8. PubMed ID: 10855391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recessive congenital methaemoglobinaemia type II a new mutation which causes incorrect splicing in the NADH-cytochrome b5 reductase gene.
    Owen EP; Berens J; Marinaki AM; Ipp H; Harley EH
    J Inherit Metab Dis; 1997 Aug; 20(4):610. PubMed ID: 9266404
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.