These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8874796)

  • 41. Site-specific modification of rabbit muscle creatine kinase with sulfhydryl-specific fluorescence probe by use of hydrostatic pressure.
    Tanaka N; Tonai T; Kunugi S
    Biochim Biophys Acta; 1997 May; 1339(2):226-32. PubMed ID: 9187242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of dissociation constants for enzyme-reactant complexes for NAD-malic enzyme by modulation of the thiol inactivation rate.
    Kiick DM; Allen BL; Rao JG; Harris BG; Cook PF
    Biochemistry; 1984 Nov; 23(23):5454-9. PubMed ID: 6509029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of thiol-modifying agents on a K(Ca2+) channel of intermediate conductance in bovine aortic endothelial cells.
    Cai S; Sauvé R
    J Membr Biol; 1997 Jul; 158(2):147-58. PubMed ID: 9230092
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Creatine kinase compactness and thiol accessibility during sodium dodecyl sulfate denaturation estimated by resonance energy transfer and 2-nitro-5-thiocyanobenzoic acid cleavage.
    Clottes E; Couthon F; Denoroy L; Vial C
    Biochim Biophys Acta; 1994 Dec; 1209(2):171-6. PubMed ID: 7811687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for proximal cysteine and lysine residues present at the nucleotide domain of rabbit muscle creatine kinase.
    Sheikh S; Mukunda K; Katiyar SS
    Biochim Biophys Acta; 1993 Dec; 1203(2):276-81. PubMed ID: 8268211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymeric thiols as enzyme activators of serum creatine phosphokinase.
    Burdick BA; Esders TW; Schaeffer JR; Lynn S
    Appl Biochem Biotechnol; 1987; 16():145-56. PubMed ID: 3504127
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of nitric oxide with 2-thio-5-nitrobenzoic acid: implications for the determination of free sulfhydryl groups by Ellman's reagent.
    Gergel' D; Cederbaum AI
    Arch Biochem Biophys; 1997 Nov; 347(2):282-8. PubMed ID: 9367537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A study of the role of the reactive thiol group of rabbit muscle creatine kinase with a chromophoric reporter group.
    Keighren MA; Price NC
    Biochem J; 1978 Apr; 171(1):269-72. PubMed ID: 646820
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative studies on sulfhydryl determination of soy protein using two aromatic disulfide reagents and two fluorescent reagents.
    Ruan Q; Chen Y; Kong X; Hua Y
    J Agric Food Chem; 2013 Mar; 61(11):2661-8. PubMed ID: 23432329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination and derivatization of protein thiols by n-octyldithionitrobenzoic acid.
    Faulstich H; Tews P; Heintz D
    Anal Biochem; 1993 Feb; 208(2):357-62. PubMed ID: 8452233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic studies and effects of anions on creatine phosphokinase from skeletal muscle of rhesus monkey (Macaca mulatta).
    Chegwidden WR; Watts DC
    Biochim Biophys Acta; 1975 Nov; 410(1):99-114. PubMed ID: 77
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis.
    Furter R; Furter-Graves EM; Wallimann T
    Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and properties of creatine kinase from the breast muscle of tropical fruit bat, Eidolon helvum (Kerr).
    Afolayan A; Daini OA
    Comp Biochem Physiol B; 1986; 85(2):463-8. PubMed ID: 3780189
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The refolding of denatured rabbit muscle creatine kinase.
    Bickerstaff GF; Paterson C; Price NC
    Biochim Biophys Acta; 1980 Feb; 621(2):305-14. PubMed ID: 6766324
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M; Tokushige M; Katsuki H
    J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The nature and reactivity of the "essential" thiol in rabbit muscle creatine kinase III (EC 2.7.3.2).
    Fawcett AH; Keto AI; Mackerras P; Hamilton SE; Zerner B
    Biochem Biophys Res Commun; 1982 Jul; 107(1):302-6. PubMed ID: 7126210
    [No Abstract]   [Full Text] [Related]  

  • 57. Effect of cysteine modification on creatine kinase aggregation.
    Zou HC; Lü ZR; Wang YJ; Zhang YM; Zou F; Park YD
    Appl Biochem Biotechnol; 2009 Jan; 152(1):15-28. PubMed ID: 18548203
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resonance energy transfer between the active sites of rabbit muscle creatine kinase: analysis by steady-state and time-resolved fluorescence.
    Grossman SH
    Biochemistry; 1989 May; 28(11):4894-902. PubMed ID: 2765518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes.
    Smith DJ; Maggio ET; Kenyon GL
    Biochemistry; 1975 Feb; 14(4):766-71. PubMed ID: 163643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Re-evaluation of the role of thiol groups in rabbit muscle aldolase A.
    Heyduk T; Kochman M
    Biochim Biophys Acta; 1986 Dec; 874(3):365-7. PubMed ID: 3790576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.