BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8874801)

  • 1. Allosteric regulation by Mg2+ of the vacuolar H(+)-PPase from Acer pseudoplatanus cells. Ca2+/Mg2+ interactions.
    Fraichard A; Trossat C; Perotti E; Pugin A
    Biochimie; 1996; 78(4):259-66. PubMed ID: 8874801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases.
    Maeshima M
    Eur J Biochem; 1991 Feb; 196(1):11-7. PubMed ID: 1848180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state kinetics of substrate hydrolysis by vacuolar H(+)-pyrophosphatase. A simple three-state model.
    Baykov AA; Bakuleva NP; Rea PA
    Eur J Biochem; 1993 Oct; 217(2):755-62. PubMed ID: 8223618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetic mechanism of yeast inorganic pyrophosphatase.
    Barry RJ; Dunaway-Mariano D
    Arch Biochem Biophys; 1987 Nov; 259(1):196-203. PubMed ID: 2825596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Ca2+-induced inhibition of Escherichia coli inorganic pyrophosphatase.
    Avaeva SM; Vorobyeva NN; Kurilova SA; Nazarova TI; Polyakov KM; Rodina EV; Samygina VR
    Biochemistry (Mosc); 2000 Mar; 65(3):373-87. PubMed ID: 10739481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric regulation of yeast inorganic pyrophosphatase by substrate.
    Baykov AA; Pavlov AR; Kasho VN; Avaeva SM
    Arch Biochem Biophys; 1989 Sep; 273(2):301-8. PubMed ID: 2549872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning.
    Rodina EV; Vainonen YP; Vorobyeva NN; Kurilova SA; Nazarova TI; Avaeva SM
    Eur J Biochem; 2001 Jul; 268(13):3851-7. PubMed ID: 11432753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue.
    Hsiao YY; Van RC; Hung HH; Pan RL
    J Protein Chem; 2002 Jan; 21(1):51-8. PubMed ID: 11902667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis by Escherichia coli inorganic pyrophosphatase: pH and Mg2+ dependence.
    Baykov AA; Hyytia T; Volk SE; Kasho VN; Vener AV; Goldman A; Lahti R; Cooperman BS
    Biochemistry; 1996 Apr; 35(15):4655-61. PubMed ID: 8664254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of tyrosine residue in the inhibition of plant vacuolar H(+)-pyrophosphatase by tetranitromethane.
    Yang SJ; Jiang SS; Tzeng CM; Kuo SY; Hung SH; Pan RL
    Biochim Biophys Acta; 1996 May; 1294(1):89-97. PubMed ID: 8639720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Catalytic properties of inorganic pyrophosphatase in rat liver mitochondria].
    Dubnova EB; Baĭkov AA
    Biokhimiia; 1991 Dec; 56(12):2181-7. PubMed ID: 1666958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate kinetics of the tonoplast h-translocating inorganic pyrophosphatase and its activation by free mg.
    White PJ; Marshall J; Smith JA
    Plant Physiol; 1990 Jul; 93(3):1063-70. PubMed ID: 16667558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the Vacuolar H-Pyrophosphatase : The Roles of Magnesium, Pyrophosphate, and their Complexes as Substrates, Activators, and Inhibitors.
    Leigh RA; Pope AJ; Jennings IR; Sanders D
    Plant Physiol; 1992 Dec; 100(4):1698-705. PubMed ID: 16653186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of mitochondrial-matrix inorganic pyrophosphatase by physiological [Ca2+], and its role in the hormonal regulation of mitochondrial matrix volume.
    Davidson AM; Halestrap AP
    Biochem J; 1989 Mar; 258(3):817-21. PubMed ID: 2543362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of D42N substitution in Escherichia coli inorganic pyrophosphatase on catalytic activity and Mg2+ binding.
    Avaeva SM; Rodina EV; Kurilova SA; Nazarova TI; Vorobyeva NN
    FEBS Lett; 1996 Aug; 392(2):91-4. PubMed ID: 8772181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cercospora beticola toxins. Part XVII. The role of the beticolin/Mg2+ complexes in their biological activity. Study of plasma membrane H(+)-ATPase, vacuolar H(+)-PPase, alkaline and acid phosphatases.
    Gomès E; Gordon-Weeks R; Simon-Plas F; Pugin A; Milat ML; Leigh RA; Blein JP
    Biochim Biophys Acta; 1996 Nov; 1285(1):38-46. PubMed ID: 8948473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of spermine and spermidine on the inorganic pyrophosphatase of Streptococcus faecalis. Interactions between polyamines and inorganic pyrophosphate.
    Lahti R; Hannukainen R; Lönnberg H
    Biochem J; 1989 Apr; 259(1):55-9. PubMed ID: 2541687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization of the hydrolytic activity of the H+-pyrophosphatase of Rhodospirillum rubrum in membrane-bound and isolated states.
    Baykov AA; Sergina NV; Evtushenko OA; Dubnova EB
    Eur J Biochem; 1996 Feb; 236(1):121-7. PubMed ID: 8617255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of inorganic pyrophosphatase of animal mitochondria by calcium.
    Baykov AA; Volk SE; Unguryte A
    Arch Biochem Biophys; 1989 Sep; 273(2):287-91. PubMed ID: 2549870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg2+ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Sosa A; Ordaz H; Romero I; Celis H
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):561-6. PubMed ID: 1315519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.