BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8874896)

  • 21. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of calretinin immunoreactivity in the mouse inner ear.
    Dechesne CJ; Rabejac D; Desmadryl G
    J Comp Neurol; 1994 Aug; 346(4):517-29. PubMed ID: 7983242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptophysin and GAP-43 proteins in efferent fibers of the inner ear during postnatal development.
    Knipper M; Zimmermann U; Rohbock K; Köpschall I; Zenner HP
    Brain Res Dev Brain Res; 1995 Oct; 89(1):73-86. PubMed ID: 8575095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptophysin in the developing cochlea.
    Gil-Loyzaga P; Pujol R
    Int J Dev Neurosci; 1988; 6(2):155-60. PubMed ID: 3145671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterns of GABA-like immunoreactivity in efferent fibers of the human cochlea.
    Schrott-Fischer A; Kammen-Jolly K; Scholtz AW; Glückert R; Eybalin M
    Hear Res; 2002 Dec; 174(1-2):75-85. PubMed ID: 12433398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructural evaluation of calcitonin gene-related peptide immunoreactivity in the human cochlea and vestibular endorgans.
    Kong WJ; Scholtz AW; Kammen-Jolly K; Glückert R; Hussl B; von Cauvenberg PB; Schrott-Fischer A
    Eur J Neurosci; 2002 Feb; 15(3):487-97. PubMed ID: 11876776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses.
    Johnson SL; Franz C; Knipper M; Marcotti W
    J Physiol; 2009 Apr; 587(Pt 8):1715-26. PubMed ID: 19237422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acid labeling patterns in the efferent innervation of the cochlea: an electron microscopic autoradiographic study.
    Schwartz IR; Ryan AF
    J Comp Neurol; 1986 Apr; 246(4):500-12. PubMed ID: 3700725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse.
    Suthakar K; Ryugo DK
    J Comp Neurol; 2021 Aug; 529(11):2995-3012. PubMed ID: 33754334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea.
    Jeng JY; Ceriani F; Hendry A; Johnson SL; Yen P; Simmons DD; Kros CJ; Marcotti W
    J Physiol; 2020 Jan; 598(1):151-170. PubMed ID: 31661723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of surgical lesions on choline acetyltransferase activity in the cat cochlea.
    Frilling MJ; Wiet GJ; Godfrey DA; Parli JA; Dunn JD; Ross CD
    Hear Res; 2017 Dec; 356():16-24. PubMed ID: 29056431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunocytochemical detection of calcitonin gene-related peptide in the postnatal developing rat cochlea.
    Merchan-Perez A; Gil-Loyzaga P; Eybalin M
    Int J Dev Neurosci; 1990; 8(5):603-12. PubMed ID: 2281819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins.
    Kim KX; Fettiplace R
    J Gen Physiol; 2013 Jan; 141(1):141-8. PubMed ID: 23277480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical and morphological differentiation of acetylcholinesterase-positive efferent fibers in the mouse cochlea.
    Emmerling MR; Sobkowicz HM; Levenick CV; Scott GL; Slapnick SM; Rose JE
    J Electron Microsc Tech; 1990 Jun; 15(2):123-43. PubMed ID: 2192019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of alpha and beta parvalbumin is differentially regulated in the rat organ of corti during development.
    Yang D; Thalmann I; Thalmann R; Simmons DD
    J Neurobiol; 2004 Mar; 58(4):479-92. PubMed ID: 14978725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry.
    Hafidi A; Després G; Romand R
    Int J Dev Neurosci; 1993 Aug; 11(4):507-12. PubMed ID: 8237466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Olivocochlear innervation maintains the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic morphology.
    Yin Y; Liberman LD; Maison SF; Liberman MC
    J Assoc Res Otolaryngol; 2014 Aug; 15(4):571-83. PubMed ID: 24825663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Afferent innervation of outer and inner hair cells is normal in neonatally de-efferented cats.
    Liberman MC; O'Grady DF; Dodds LW; McGee J; Walsh EJ
    J Comp Neurol; 2000 Jul; 423(1):132-9. PubMed ID: 10861542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The GABA/GAD innervation within the inner spiral bundle in the mouse cochlea.
    Nitecka LM; Sobkowicz HM
    Hear Res; 1996 Sep; 99(1-2):91-105. PubMed ID: 8970817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related changes in olivocochlear efferent innervation in gerbils.
    Steenken F; Pektaş A; Köppl C
    Front Synaptic Neurosci; 2024; 16():1422330. PubMed ID: 38887655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.