These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 887499)
1. Inhibitory effect of dopamine on acetylcholine release from caudate nucleus. Vizi SE; Rónai A; Hársing L; Knoll J Pol J Pharmacol Pharm; 1977; 29(3):201-11. PubMed ID: 887499 [TBL] [Abstract][Full Text] [Related]
2. Evidence for multiple dopamine receptors involved in the modulation of acetylcholine release in the striatum. Hársing LG; Vizi ES Pol J Pharmacol Pharm; 1985; 37(3):383-96. PubMed ID: 2866504 [TBL] [Abstract][Full Text] [Related]
3. Changes in the sensitivity to apomorphine of dopamine receptors modulating dopamine and acetylcholine release after chronic treatment with bromocriptine or haloperidol. Cubeddu LX; Hoffmann IS; James MK; Niedzwiecki DM J Pharmacol Exp Ther; 1983 Sep; 226(3):680-5. PubMed ID: 6887008 [TBL] [Abstract][Full Text] [Related]
4. Trace amines inhibit the electrically evoked release of [3H]acetylcholine from slices of rat striatum in the presence of pargyline: similarities between beta-phenylethylamine and amphetamine. Baud P; Arbilla S; Cantrill RC; Scatton B; Langer SZ J Pharmacol Exp Ther; 1985 Oct; 235(1):220-9. PubMed ID: 3930699 [TBL] [Abstract][Full Text] [Related]
5. Amphetamine inhibits the electrically evoked release of [3H]dopamine from slices of the rabbit caudate. Kamal LA; Arbilla S; Galzin AM; Langer SZ J Pharmacol Exp Ther; 1983 Nov; 227(2):446-58. PubMed ID: 6631724 [TBL] [Abstract][Full Text] [Related]
6. [Neurochemical mechanisms of caudate nucleus participation in the performance of food-getting behavior]. Shugalev NP Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(6):1167-72. PubMed ID: 7467838 [TBL] [Abstract][Full Text] [Related]
7. Neurotensin-induced dopamine release in vivo and in vitro from substantia nigra and nucleus caudate. Faggin BM; Zubieta JK; Rezvani AH; Cubeddu LX J Pharmacol Exp Ther; 1990 Feb; 252(2):817-25. PubMed ID: 2138224 [TBL] [Abstract][Full Text] [Related]
8. Comparative dopamine-cholinergic mechanisms in the olfactory tubercle and the striatum: effects of metoclopramide. Suarez-Roca H; Lovenberg T; Cubeddu LX J Pharmacol Exp Ther; 1987 Dec; 243(3):840-51. PubMed ID: 3320346 [TBL] [Abstract][Full Text] [Related]
9. Interactions between endogenous dopamine and dopamine agonists at release modulatory receptors: multiple effects of neuronal uptake inhibitors on transmitter release. Hoffmann IS; Talmaciu RK; Cubeddu LX J Pharmacol Exp Ther; 1986 Aug; 238(2):437-46. PubMed ID: 2942676 [TBL] [Abstract][Full Text] [Related]
10. Changes in sensitivity of release modulating dopamine autoreceptors after chronic treatment with haloperidol. Nowak JZ; Arbilla S; Galzin AM; Langer SZ J Pharmacol Exp Ther; 1983 Aug; 226(2):558-64. PubMed ID: 6875865 [TBL] [Abstract][Full Text] [Related]
11. Dopaminergic infllence in the basal ganglia: evidence for striatonigral feedback regulation. Bunney BS; Aghajanian GK Res Publ Assoc Res Nerv Ment Dis; 1976; 55():249-67. PubMed ID: 826996 [No Abstract] [Full Text] [Related]
12. Effects of acute and chronic clozapine and haloperidol on in vitro release of acetylcholine and dopamine from striatum and nucleus accumbens. Compton DR; Johnson KM J Pharmacol Exp Ther; 1989 Feb; 248(2):521-30. PubMed ID: 2918468 [TBL] [Abstract][Full Text] [Related]
13. Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. DeBoer P; Abercrombie ED J Pharmacol Exp Ther; 1996 May; 277(2):775-83. PubMed ID: 8627558 [TBL] [Abstract][Full Text] [Related]
14. Origin of various enzymes released from the substantia nigra and caudate nucleus: effects of 6-hydroxydopamine lesions of the nigro-striatal pathway. Greenfield SA; Grünewald RA; Foley P; Shaw SG J Comp Neurol; 1983 Feb; 214(1):87-92. PubMed ID: 6404955 [TBL] [Abstract][Full Text] [Related]
15. Effects of the antiparkinsonian drug budipine on neurotransmitter release in central nervous system tissue in vitro. Jackisch R; Huang HY; Reimann W; Limberger N J Pharmacol Exp Ther; 1993 Feb; 264(2):889-98. PubMed ID: 8094757 [TBL] [Abstract][Full Text] [Related]
16. Dopaminergic regulation of cortical acetylcholine release. Day J; Fibiger HC Synapse; 1992 Dec; 12(4):281-6. PubMed ID: 1465741 [TBL] [Abstract][Full Text] [Related]
17. Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Stadler H; Lloyd KG; Gadea-Ciria M; Bartholini G Brain Res; 1973 Jun; 55(2):476-80. PubMed ID: 4351628 [No Abstract] [Full Text] [Related]
18. [EEG analysis of the effect of stimulation of GABAergic structures of the caudate nucleus on the development of the effect of haloperidol]. Shugalev NP; Shiriaev AD Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(1):128-34. PubMed ID: 3577401 [TBL] [Abstract][Full Text] [Related]
19. Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum. Zackheim J; Abercrombie ED Neuroscience; 2005; 131(2):423-36. PubMed ID: 15708484 [TBL] [Abstract][Full Text] [Related]
20. Presynaptic dopaminergic activity of phencyclidine in rat caudate. Johnson SW; Haroldsen PE; Hoffer BJ; Freedman R J Pharmacol Exp Ther; 1984 Apr; 229(1):321-32. PubMed ID: 6707946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]