BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8875238)

  • 1. Long-range chromatin analysis of the human MYC locus by pulsed-field gel electrophoresis.
    Mautner J; Bornkamm GW; Polack A
    Genes Chromosomes Cancer; 1996 Aug; 16(4):247-53. PubMed ID: 8875238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries.
    Sabo PJ; Humbert R; Hawrylycz M; Wallace JC; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4537-42. PubMed ID: 15070753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.
    Kodama Y; Nagaya S; Shinmyo A; Kato K
    Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip).
    Shibata Y; Crawford GE
    Methods Mol Biol; 2009; 556():177-90. PubMed ID: 19488879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA region around the c-myc gene and its amplification in human tumour cell lines.
    Feo S; Di Liegro C; Jones T; Read M; Fried M
    Oncogene; 1994 Mar; 9(3):955-61. PubMed ID: 8108141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNaseI hypersensitivity analysis of chromatin structure.
    Lu Q; Richardson B
    Methods Mol Biol; 2004; 287():77-86. PubMed ID: 15273405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple collagen I gene regulatory elements have sites of stress-induced DNA duplex destabilization and nuclear scaffold/matrix association potential.
    Mielke C; Christensen MO; Westergaard O; Bode J; Benham CJ; Breindl M
    J Cell Biochem; 2002; 84(3):484-96. PubMed ID: 11813254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the in vivo signature of human gene regulatory sequences.
    Noble WS; Kuehn S; Thurman R; Yu M; Stamatoyannopoulos J
    Bioinformatics; 2005 Jun; 21 Suppl 1():i338-43. PubMed ID: 15961476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.
    Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA
    Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput localization of functional elements by quantitative chromatin profiling.
    Dorschner MO; Hawrylycz M; Humbert R; Wallace JC; Shafer A; Kawamoto J; Mack J; Hall R; Goldy J; Sabo PJ; Kohli A; Li Q; McArthur M; Stamatoyannopoulos JA
    Nat Methods; 2004 Dec; 1(3):219-25. PubMed ID: 15782197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Regulatory systems of genome domains with vague boundaries].
    Iudinkova ES; Razin SV
    Genetika; 2003 Feb; 39(2):182-6. PubMed ID: 12669413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of phosphorylation of DNA-binding proteins in regulation of transcription of the human c-myc gene.
    Imamova LR; Chernov BK; Itkes AV
    Biochemistry (Mosc); 1997 Oct; 62(10):1152-7. PubMed ID: 9461638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression.
    Nemeth MJ; Bodine DM; Garrett LJ; Lowrey CH
    Blood Cells Mol Dis; 2001; 27(4):767-80. PubMed ID: 11778661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The even-skipped locus is contained in a 16-kb chromatin domain.
    Sackerson C; Fujioka M; Goto T
    Dev Biol; 1999 Jul; 211(1):39-52. PubMed ID: 10373303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements.
    Göttgens B; McLaughlin F; Bockamp EO; Fordham JL; Begley CG; Kosmopoulos K; Elefanty AG; Green AR
    Oncogene; 1997 Nov; 15(20):2419-28. PubMed ID: 9395238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large upstream region is not necessary for gene expression or hypersensitive site formation at the mouse beta -globin locus.
    Farrell CM; Grinberg A; Huang SP; Chen D; Pichel JG; Westphal H; Felsenfeld G
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14554-9. PubMed ID: 11121056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of amplified DNA, analyzed by pulsed field gradient gel electrophoresis.
    Borst P; Van der Bliek AM; Van der Velde-Koerts T; Hes E
    J Cell Biochem; 1987 Aug; 34(4):247-58. PubMed ID: 3624321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of long range regulatory elements of mouse alpha-globin gene cluster by quantitative associated chromatin trap (QACT).
    Di LJ; Wang L; Zhou GL; Wu XS; Guo ZC; Ke XS; Liu DP; Liang CC
    J Cell Biochem; 2008 Sep; 105(1):301-12. PubMed ID: 18655188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved chromatin structure in c-myc 5'flanking DNA after viral transduction.
    Kumar S; Leffak M
    J Mol Biol; 1991 Nov; 222(1):45-57. PubMed ID: 1942068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic approaches to studying CFTR transcriptional regulation.
    Ott CJ; Harris A
    Methods Mol Biol; 2011; 741():193-209. PubMed ID: 21594786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.