These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 8875326)
1. Characterization of two distinct populations of detergent resistant membrane complexes isolated from chick brain tissues. Henke RC; Hancox KA; Jeffrey PL J Neurosci Res; 1996 Sep; 45(5):617-30. PubMed ID: 8875326 [TBL] [Abstract][Full Text] [Related]
2. Thy-1 and AvGp50 signal transduction complex in the avian nervous system: c-Fyn and G alpha i protein association and activation of signalling pathways. Henke RC; Seeto GS; Jeffrey PL J Neurosci Res; 1997 Sep; 49(6):655-70. PubMed ID: 9335254 [TBL] [Abstract][Full Text] [Related]
3. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. Sargiacomo M; Sudol M; Tang Z; Lisanti MP J Cell Biol; 1993 Aug; 122(4):789-807. PubMed ID: 8349730 [TBL] [Abstract][Full Text] [Related]
4. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Ilangumaran S; Hoessli DC Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):433-40. PubMed ID: 9761744 [TBL] [Abstract][Full Text] [Related]
5. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mayor S; Maxfield FR Mol Biol Cell; 1995 Jul; 6(7):929-44. PubMed ID: 7579703 [TBL] [Abstract][Full Text] [Related]
6. Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. Gorodinsky A; Harris DA J Cell Biol; 1995 May; 129(3):619-27. PubMed ID: 7537273 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of detergent-resistant microdomains responsive to NCAM-mediated signaling from growth cones. He Q; Meiri KF Mol Cell Neurosci; 2002 Jan; 19(1):18-31. PubMed ID: 11817895 [TBL] [Abstract][Full Text] [Related]
8. Detergent-resistant membrane microdomains from Caco-2 cells do not contain caveolin. Mirre C; Monlauzeur L; Garcia M; Delgrossi MH; Le Bivic A Am J Physiol; 1996 Sep; 271(3 Pt 1):C887-94. PubMed ID: 8843719 [TBL] [Abstract][Full Text] [Related]
9. Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes. Ilangumaran S; Briol A; Hoessli DC Biochim Biophys Acta; 1997 Sep; 1328(2):227-36. PubMed ID: 9315619 [TBL] [Abstract][Full Text] [Related]
10. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. Hanada K; Nishijima M; Akamatsu Y; Pagano RE J Biol Chem; 1995 Mar; 270(11):6254-60. PubMed ID: 7890763 [TBL] [Abstract][Full Text] [Related]
11. Src family kinase activation in glycosphingolipid-rich membrane domains of endothelial cells treated with oxidised low density lipoprotein. Myers SJ; Stanley KK Atherosclerosis; 1999 Apr; 143(2):389-97. PubMed ID: 10217369 [TBL] [Abstract][Full Text] [Related]
12. Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation. Heffer-Lauc M; Lauc G; Nimrichter L; Fromholt SE; Schnaar RL Biochim Biophys Acta; 2005 Jan; 1686(3):200-8. PubMed ID: 15629689 [TBL] [Abstract][Full Text] [Related]
13. Association of Engrailed homeoproteins with vesicles presenting caveolae-like properties. Joliot A; Trembleau A; Raposo G; Calvet S; Volovitch M; Prochiantz A Development; 1997 May; 124(10):1865-75. PubMed ID: 9169834 [TBL] [Abstract][Full Text] [Related]
14. Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Stuermer CA; Lang DM; Kirsch F; Wiechers M; Deininger SO; Plattner H Mol Biol Cell; 2001 Oct; 12(10):3031-45. PubMed ID: 11598189 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of a novel glycoprotein (AvGp50) in the avian nervous system, with a monoclonal antibody. Hancox KA; Sheppard AM; Jeffrey PL Brain Res Dev Brain Res; 1992 Nov; 70(1):25-37. PubMed ID: 1473276 [TBL] [Abstract][Full Text] [Related]
16. Caveolae-like structures in the surface membrane of Schistosoma mansoni. Racoosin EL; Davies SJ; Pearce EJ Mol Biochem Parasitol; 1999 Nov; 104(2):285-97. PubMed ID: 10593182 [TBL] [Abstract][Full Text] [Related]
17. Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin. Arvanitis DN; Min W; Gong Y; Heng YM; Boggs JM J Neurochem; 2005 Sep; 94(6):1696-710. PubMed ID: 16045452 [TBL] [Abstract][Full Text] [Related]
18. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. McCabe JB; Berthiaume LG Mol Biol Cell; 2001 Nov; 12(11):3601-17. PubMed ID: 11694592 [TBL] [Abstract][Full Text] [Related]
19. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Sheets ED; Lee GM; Simson R; Jacobson K Biochemistry; 1997 Oct; 36(41):12449-58. PubMed ID: 9376349 [TBL] [Abstract][Full Text] [Related]
20. Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells. Surviladze Z; Dráberová L; Kubínová L; Dráber P Eur J Immunol; 1998 Jun; 28(6):1847-58. PubMed ID: 9645366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]