These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 8877203)
1. Natural frequencies of vibration of a fibre supported human tympanic membrane analysed by the finite element method. Williams KR; Lesser TH Clin Otolaryngol Allied Sci; 1993 Oct; 18(5):375-86. PubMed ID: 8877203 [TBL] [Abstract][Full Text] [Related]
2. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I. Williams KR; Lesser TH Br J Audiol; 1990 Oct; 24(5):319-27. PubMed ID: 2265302 [TBL] [Abstract][Full Text] [Related]
3. Mode shapes of a damaged and repaired tympanic membrane as analysed by the finite element method. Williams KR; Blayney AW; Lesser TH Clin Otolaryngol Allied Sci; 1997 Apr; 22(2):126-31. PubMed ID: 9160924 [TBL] [Abstract][Full Text] [Related]
4. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. Funnell WR J Acoust Soc Am; 1983 May; 73(5):1657-61. PubMed ID: 6863742 [TBL] [Abstract][Full Text] [Related]
5. [Experimental study of vibration analysis in middle ear models by holographic interferometry. Effects of the cross-sectioned area of aditus on the vibration of tympanic membrane]. Ishihara M Nihon Jibiinkoka Gakkai Kaiho; 1989 May; 92(5):726-35. PubMed ID: 2614565 [TBL] [Abstract][Full Text] [Related]
6. A 3-D finite element analysis of the natural frequencies of vibration of a stapes prosthesis replacement reconstruction of the middle ear. Williams KR; Blayney AW; Lesser TH Clin Otolaryngol Allied Sci; 1995 Feb; 20(1):36-44. PubMed ID: 7788932 [TBL] [Abstract][Full Text] [Related]
7. [Holographic observation of the tympanic membrane vibration after stapes fixation]. Naito Y Nihon Jibiinkoka Gakkai Kaiho; 1990 Dec; 93(12):2021-7. PubMed ID: 2292753 [TBL] [Abstract][Full Text] [Related]
8. The effect of ventilation tubes on stresses and vibration motion in the tympanic membrane: a finite element analysis. Prendergast PJ; Kelly DJ; Rafferty M; Blayney AW Clin Otolaryngol Allied Sci; 1999 Dec; 24(6):542-8. PubMed ID: 10607004 [TBL] [Abstract][Full Text] [Related]
9. Biomechanics of the tympanic membrane. Volandri G; Di Puccio F; Forte P; Carmignani C J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326 [TBL] [Abstract][Full Text] [Related]
10. A dynamic and natural frequency analysis of the Fisch II spandrel using the finite element method. Williams KR; Lesser TH Clin Otolaryngol Allied Sci; 1992 Jun; 17(3):261-70. PubMed ID: 1505096 [TBL] [Abstract][Full Text] [Related]
11. Viscoelastic properties of gerbil tympanic membrane at very low frequencies. Aernouts J; Dirckx JJ J Biomech; 2012 Apr; 45(6):919-24. PubMed ID: 22326125 [TBL] [Abstract][Full Text] [Related]
12. Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat. Decraemer WF; Khanna SM; Funnell WR Hear Res; 1989 Mar; 38(1-2):1-17. PubMed ID: 2708151 [TBL] [Abstract][Full Text] [Related]
13. Modeling of the cat eardrum as a thin shell using the finite-element method. Funnell WR; Laszlo CA J Acoust Soc Am; 1978 May; 63(5):1461-7. PubMed ID: 690327 [TBL] [Abstract][Full Text] [Related]
14. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model. O'Connor KN; Cai H; Puria S J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482 [TBL] [Abstract][Full Text] [Related]
15. Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry. Wada H; Ando M; Takeuchi M; Sugawara H; Koike T; Kobayashi T; Hozawa K; Gemma T; Nara M J Acoust Soc Am; 2002 May; 111(5 Pt 1):2189-99. PubMed ID: 12051438 [TBL] [Abstract][Full Text] [Related]
16. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer]. Szymański M; Rusinek R; Zadrozniak M; Warmiński J; Morshed K Otolaryngol Pol; 2009; 63(2):182-5. PubMed ID: 19681493 [TBL] [Abstract][Full Text] [Related]
17. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis. Lee CF; Hsu LP; Chen PR; Chou YF; Chen JH; Liu TC Audiol Neurootol; 2006; 11(6):380-8. PubMed ID: 16988502 [TBL] [Abstract][Full Text] [Related]
19. Dynamic Properties of Microresonators with the Bionic Structure of Tympanic Membrane. Tai Y; Zhou K; Chen N Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291441 [TBL] [Abstract][Full Text] [Related]
20. Vibration measurement of the human tympanic membrane--in vivo. Løkberg OJ; Høgmoen K; Gundersen T Acta Otolaryngol; 1980; 89(1-2):37-42. PubMed ID: 7405575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]