These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8877449)

  • 1. Lens induction in axolotls: comparison with inductive signaling mechanisms in Xenopus laevis.
    Servetnick MD; Cook TL; Grainger RM
    Int J Dev Biol; 1996 Aug; 40(4):755-61. PubMed ID: 8877449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A re-examination of lens induction in chicken embryos: in vitro studies of early tissue interactions.
    Sullivan CH; Braunstein L; Hazard-Leonards RM; Holen AL; Samaha F; Stephens L; Grainger RM
    Int J Dev Biol; 2004; 48(8-9):771-82. PubMed ID: 15558470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The matured eye of Xenopus laevis tadpoles produces factors that elicit a lens-forming response in embryonic ectoderm.
    Henry JJ; Mittleman JM
    Dev Biol; 1995 Sep; 171(1):39-50. PubMed ID: 7556906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinvestigation of the role of the optic vesicle in embryonic lens induction.
    Grainger RM; Herry JJ; Henderson RA
    Development; 1988 Mar; 102(3):517-26. PubMed ID: 3181032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis.
    Henry JJ; Elkins MB
    Dev Genes Evol; 2001 Sep; 211(8-9):377-87. PubMed ID: 11685571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inductive processes leading to inner ear formation during Xenopus development.
    Gallagher BC; Henry JJ; Grainger RM
    Dev Biol; 1996 Apr; 175(1):95-107. PubMed ID: 8608872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis.
    Henry JJ; Grainger RM
    Dev Biol; 1987 Nov; 124(1):200-14. PubMed ID: 3666306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress on the mechanisms of embryonic lens formation.
    Grainger RM; Henry JJ; Saha MS; Servetnick M
    Eye (Lond); 1992; 6 ( Pt 2)():117-22. PubMed ID: 1624032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Induction mechanisms and the programming of differentiation].
    Lopashov GV; Khoperskaia OA
    Ontogenez; 1977; 8(6):563-81. PubMed ID: 341012
    [No Abstract]   [Full Text] [Related]  

  • 11. Lens and retina formation require expression of Pitx3 in Xenopus pre-lens ectoderm.
    Khosrowshahian F; Wolanski M; Chang WY; Fujiki K; Jacobs L; Crawford MJ
    Dev Dyn; 2005 Nov; 234(3):577-89. PubMed ID: 16170783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction.
    Henry JJ; Carinato ME; Schaefer JJ; Wolfe AD; Walter BE; Perry KJ; Elbl TN
    Dev Dyn; 2002 Jun; 224(2):168-85. PubMed ID: 12112470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical investigation of lens induction in vitro. II. Demonstration of the induction substance.
    Van Der Starre H
    Acta Morphol Neerl Scand; 1978 May; 16(2):109-20. PubMed ID: 676800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves.
    Nieuwkoop PD; Björklund NK; Gordon R
    Int J Dev Biol; 1996 Aug; 40(4):661-4. PubMed ID: 8877438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens-forming competence in the epidermis of Xenopus laevis during development.
    Arresta E; Bernardini S; Gargioli C; Filoni S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):1-12. PubMed ID: 15612005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical investigation of lens induction in vitro. I. Induction properties of the eye cup and ectodermal response.
    van der Starre H
    Acta Morphol Neerl Scand; 1977 Dec; 15(4):275-86. PubMed ID: 602828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permissive and directive interactions in lens induction.
    Karkinen-Jääskeläinen M
    J Embryol Exp Morphol; 1978 Apr; 44():167-79. PubMed ID: 650134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optic vesicle promotes cornea to lens transdifferentiation in larval Xenopus laevis.
    Cannata SM; Bernardini S; Filoni S; Gargioli C
    J Anat; 2008 May; 212(5):621-6. PubMed ID: 18430089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early tissue interactions leading to embryonic lens formation in Xenopus laevis.
    Henry JJ; Grainger RM
    Dev Biol; 1990 Sep; 141(1):149-63. PubMed ID: 2390999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis.
    Ribisi S; Mariani FV; Aamar E; Lamb TM; Frank D; Harland RM
    Dev Biol; 2000 Nov; 227(1):183-96. PubMed ID: 11076686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.