These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8877449)

  • 21. Defining intermediate stages in cell determination: acquisition of a lens-forming bias in head ectoderm during lens determination.
    Grainger RM; Mannion JE; Cook TL; Zygar CA
    Dev Genet; 1997; 20(3):246-57. PubMed ID: 9216064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Experimental and biochemical aspects of crystalline lens induction during embryogenesis].
    Mikhaĭlov AT
    Ontogenez; 1978; 9(3):211-27. PubMed ID: 353616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concentration dependence of inductive activity in the mixture of lens epithelium proteins.
    Zemchikhina VN
    Tsitologiia; 2003; 45(10):1027-31. PubMed ID: 14989175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth factor regulation of lens development.
    Lovicu FJ; McAvoy JW
    Dev Biol; 2005 Apr; 280(1):1-14. PubMed ID: 15766743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis.
    Wolfe AD; Henry JJ
    Dev Dyn; 2006 Apr; 235(4):1027-41. PubMed ID: 16456849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embryonic lens induction: more than meets the optic vesicle.
    Saha MS; Spann CL; Grainger RM
    Cell Differ Dev; 1989 Dec; 28(3):153-71. PubMed ID: 2695232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lens formation from the cornea following implantation into hindlimbs of larval Xenopus laevis: the influence of limb innervation and extent of differentiation.
    Filoni S; Albanesi C; Bernardini S; Cannata SM
    J Exp Zool; 1991 Nov; 260(2):220-8. PubMed ID: 1940824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental analysis of lens-forming capacity in Xenopus borealis larvae.
    Filoni S; Bernardini S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2006 Jul; 305(7):538-50. PubMed ID: 16703619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extralenticular expression of Xenopus laevis alpha-, beta-, and gamma-crystallin genes.
    Brunekreef GA; van Genesen ST; Destrée OH; Lubsen NH
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2764-71. PubMed ID: 9418729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription factors involved in lens development from the preplacodal ectoderm.
    Ogino H; Ochi H; Reza HM; Yasuda K
    Dev Biol; 2012 Mar; 363(2):333-47. PubMed ID: 22269169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development.
    Elkins MB; Henry JJ
    Dev Dyn; 2006 Jul; 235(7):1845-57. PubMed ID: 16607642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration.
    Mizuno N; Ueda Y; Kondoh H
    Dev Growth Differ; 2005 Apr; 47(3):131-40. PubMed ID: 15839998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis.
    Ahrens K; Schlosser G
    Dev Biol; 2005 Dec; 288(1):40-59. PubMed ID: 16271713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage.
    Johnson AD; Crother B; White ME; Patient R; Bachvarova RF; Drum M; Masi T
    Philos Trans R Soc Lond B Biol Sci; 2003 Aug; 358(1436):1371-9. PubMed ID: 14511484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of L-type Ca2+ channel during early embryogenesis in Xenopus laevis.
    Drean G; Leclerc C; Duprat AM; Moreau M
    Int J Dev Biol; 1995 Dec; 39(6):1027-32. PubMed ID: 8901206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Significance of the surface membrane of the embryonic eye for lens induction].
    Zemchikhina VN; Lopashov GV
    Dokl Akad Nauk; 1997 Sep; 356(3):409-11. PubMed ID: 9376812
    [No Abstract]   [Full Text] [Related]  

  • 37. Studies on the process of lens induction inXenopus laevis (Daudin).
    Brahma SK
    Wilhelm Roux Arch Entwickl Mech Org; 1959 Jan; 151(2):181-187. PubMed ID: 28354744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing.
    Carinato ME; Walter BE; Henry JJ
    Dev Dyn; 2000 Apr; 217(4):377-87. PubMed ID: 10767082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms.
    Beck CW; Izpisúa Belmonte JC; Christen B
    Dev Dyn; 2009 Jun; 238(6):1226-48. PubMed ID: 19280606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer.
    Servetnick M; Grainger RM
    Development; 1991 May; 112(1):177-88. PubMed ID: 1769326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.