These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8877449)

  • 41. Pbx genes are required in Xenopus lens development.
    Morgan R; Sohal J; Paleja M; Pettengell R
    Int J Dev Biol; 2004 Sep; 48(7):623-7. PubMed ID: 15470634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lens induction in vertebrates: variations on a conserved theme of signaling events.
    Donner AL; Lachke SA; Maas RL
    Semin Cell Dev Biol; 2006 Dec; 17(6):676-85. PubMed ID: 17164096
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defining progressive stages in the commitment process leading to embryonic lens formation.
    Jin H; Fisher M; Grainger RM
    Genesis; 2012 Oct; 50(10):728-40. PubMed ID: 22566346
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FGF19-FGFR4 signaling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo.
    Kurose H; Okamoto M; Shimizu M; Bito T; Marcelle C; Noji S; Ohuchi H
    Dev Growth Differ; 2005 May; 47(4):213-23. PubMed ID: 15921496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis.
    Du Pasquier D; Chesneau A; Ymlahi-Ouazzani Q; Boistel R; Pollet N; Ballagny C; Sachs LM; Demeneix B; Mazabraud A
    Genesis; 2007 Jan; 45(1):1-10. PubMed ID: 17154276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Critical period in the work of the form-inducing apparatus of the lens in chick embryos, detected after chloramphenicol application].
    Puchkov VF
    Arkh Anat Gistol Embriol; 1978 Feb; 74(2):50-4. PubMed ID: 646636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The inhibition of cell proliferation by mitomycin C does not prevent transdifferentiation of outer cornea into lens in larval Xenopus laevis.
    Filoni S; Cannata SM; Bernardini S; La Mesa G
    Differentiation; 1995 Feb; 58(3):195-203. PubMed ID: 7713327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Xenopus Dab2 is required for embryonic angiogenesis.
    Cheong SM; Choi SC; Han JK
    BMC Dev Biol; 2006 Dec; 6():63. PubMed ID: 17176484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lens regeneration in larval Xenopus laevis: experimental analysis of the decline in the regenerative capacity during development.
    Filoni S; Bernardini S; Cannata SM; D'Alessio A
    Dev Biol; 1997 Jul; 187(1):13-24. PubMed ID: 9224670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transfilter lens induction in avian embryo.
    Karkinen-Jääskeläinen M
    Differentiation; 1978 Nov; 12(1):31-7. PubMed ID: 729958
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M; Mathers PH; Jamrich M
    Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytoplasmic and cortical factors participating in cleavage furrow formation in eggs of three amphibian genera; Ambystoma, Xenopus and Cynops.
    Sawai T
    J Embryol Exp Morphol; 1983 Oct; 77():243-54. PubMed ID: 6655432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.
    Chang C; Harland RM
    Development; 2007 Nov; 134(21):3861-72. PubMed ID: 17933792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists.
    Linker C; Stern CD
    Development; 2004 Nov; 131(22):5671-81. PubMed ID: 15509767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compatible limb patterning mechanisms in urodeles and anurans.
    Sessions SK; Gardiner DM; Bryant SV
    Dev Biol; 1989 Feb; 131(2):294-301. PubMed ID: 2912797
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Segregation of amphibian CNS. Analysis of induction process using combination experiments in Ambystoma mexicanum].
    Kurrat HJ
    Verh Anat Ges; 1976; (70 Pt 1):401-4. PubMed ID: 1023592
    [No Abstract]   [Full Text] [Related]  

  • 58. Bioassays of inductive interactions in amphibian development.
    Ariizumi T; Takano K; Asashima M; Malacinski GM
    Methods Mol Biol; 2000; 135():89-112. PubMed ID: 10791308
    [No Abstract]   [Full Text] [Related]  

  • 59. [Lens induction in the gastrula ectoderm under the effect of adult frog lens epithelium].
    Lopashov GV; Golubeva ON
    Dokl Akad Nauk; 1995 Jul; 343(3):406-8. PubMed ID: 7580981
    [No Abstract]   [Full Text] [Related]  

  • 60. Scanning electron microscopy of cells isolated from amphibian early embryos.
    Stanisstreet M; Smith JL
    J Embryol Exp Morphol; 1978 Dec; 48():215-23. PubMed ID: 744950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.