BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8877774)

  • 1. Na-dependent regulation of intracellular free magnesium concentration in isolated rat ventricular myocytes.
    Handy RD; Gow IF; Ellis D; Flatman PW
    J Mol Cell Cardiol; 1996 Aug; 28(8):1641-51. PubMed ID: 8877774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loading rat heart myocytes with Mg2+ using low-[Na+] solutions.
    Almulla HA; Bush PG; Steele MG; Ellis D; Flatman PW
    J Physiol; 2006 Sep; 575(Pt 2):443-54. PubMed ID: 16793904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of external magnesium on intracellular free sodium: Na+ flux via Na+/Mg2+ antiport is masked by other Na+ transport systems in rat cardiac myocytes.
    Odblom MP; Handy RD
    Magnes Res; 2001 Mar; 14(1-2):3-9. PubMed ID: 11300619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent recovery of ionised magnesium concentration following magnesium load in rat heart myocytes.
    Almulla HA; Bush PG; Steele MG; Flatman PW; Ellis D
    Pflugers Arch; 2006 Feb; 451(5):657-67. PubMed ID: 16133259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells.
    Schweigel M; Park HS; Etschmann B; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2006 Jan; 290(1):G56-65. PubMed ID: 16109844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.
    Ebel H; Hollstein M; Günther T
    Biochim Biophys Acta; 2004 Dec; 1667(2):132-40. PubMed ID: 15581848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and regulation of Mg2+ efflux and Mg2+ influx.
    Günther T
    Miner Electrolyte Metab; 1993; 19(4-5):259-65. PubMed ID: 8264512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of intracellular sodium by extracellular divalent cations: a 23Na and 31P NMR study on intact rat hearts.
    Van Echteld CJ; Van Emous JG; Jansen MA; Schreur JH; Ruigrok TJ
    J Mol Cell Cardiol; 1998 Jan; 30(1):119-26. PubMed ID: 9500870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of intracellular ionized magnesium concentration in myocytes isolated from the septomarginal band of sheep hearts.
    Gow IF; Latham T; Ellis D; Flatman PW
    Magnes Res; 1995 Sep; 8(3):223-32. PubMed ID: 8845286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.
    Tashiro M; Tursun P; Konishi M
    Biophys J; 2005 Nov; 89(5):3235-47. PubMed ID: 16085772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional consequences of detubulation of isolated rat ventricular myocytes.
    Fowler MR; Dobson RS; Orchard CH; Harrison SM
    Cardiovasc Res; 2004 Jun; 62(3):529-37. PubMed ID: 15158145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High extracellular [Mg2+]-induced increase in intracellular [Mg2+] and decrease in intracellular [Na+] are associated with activation of p38 MAP kinase and ERK2 in guinea-pig heart.
    Kim SJ; Lee SJ; Kim JS; Kang HS
    Exp Physiol; 2008 Dec; 93(12):1223-32. PubMed ID: 18586857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of increased cytoplasmic calcium upon reversal of the Na+/Ca(2+)-exchanger in isolated rat ventricular myocytes.
    Baartscheer A; Schumacher CA; Opthof T; Fiolet JW
    J Mol Cell Cardiol; 1996 Sep; 28(9):1963-73. PubMed ID: 8899555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium induced changes in intracellular free magnesium concentration in isolated rat ventricular myocytes.
    Gow IF; Flatman PW; Ellis D
    Mol Cell Biochem; 1999 Aug; 198(1-2):129-33. PubMed ID: 10497887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and control of intracellular magnesium ion concentration in guinea pig and ferret ventricular myocardium.
    Fry CH
    Magnesium; 1986; 5(5-6):306-16. PubMed ID: 3807424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardioplegic strategies for calcium control: low Ca(2+), high Mg(2+), citrate, or Na(+)/H(+) exchange inhibitor HOE-642.
    Fukuhiro Y; Wowk M; Ou R; Rosenfeldt F; Pepe S
    Circulation; 2000 Nov; 102(19 Suppl 3):III319-25. PubMed ID: 11082408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular Ca(2+)-Mg2+ interactions.
    Günther T; Vormann J
    Ren Physiol Biochem; 1994; 17(6):279-86. PubMed ID: 7533306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Protective effect of magnesium on ionic channels in guinea pig ventricular myocytes during hypoxia].
    Liu H; Chen H; Yang X
    Zhonghua Yi Xue Za Zhi; 1997 Jul; 77(7):505-8. PubMed ID: 9772450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic sodium, calcium and free energy change of the Na+/Ca2+-exchanger in rat ventricular myocytes.
    Baartscheer A; Schumacher CA; Fiolet JW
    J Mol Cell Cardiol; 1998 Nov; 30(11):2437-47. PubMed ID: 9925378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Mg2+ and magnesium depletion in isolated renal thick ascending limb cells.
    Dai LJ; Quamme GA
    J Clin Invest; 1991 Oct; 88(4):1255-64. PubMed ID: 1655827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.