BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8878577)

  • 1. Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry.
    Wenisch C; Parschalk B; Zedtwitz-Liebenstein K; Weihs A; el Menyawi I; Graninger W
    Antimicrob Agents Chemother; 1996 Sep; 40(9):2039-42. PubMed ID: 8878577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.
    Wenisch C; Parschalk B; Weiss A; Zedwitz-Liebenstein K; Hahsler B; Wenisch H; Georgopoulos A; Graninger W
    Clin Diagn Lab Immunol; 1996 Jul; 3(4):423-8. PubMed ID: 8807207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin.
    Scaglione F; Rossoni G
    J Antimicrob Chemother; 1998 Mar; 41 Suppl B():47-50. PubMed ID: 9579712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of azithromycin, roxithromycin and erythromycin on human polymorphonuclear leukocyte function against Staphylococcus aureus.
    Pascual A; López-López G; Aragón J; Perea EJ
    Chemotherapy; 1990; 36(6):422-7. PubMed ID: 1963394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of azithromycin and other macrolides on the intracellular killing of Staphylococcus aureus by human polymorphonuclear leucocytes of healthy donors and a patient with Chédiak-Higashi syndrome.
    Paulsen P; Simon C; Peters O; Hedderich J; Heim P
    Chemotherapy; 1992; 38(3):185-90. PubMed ID: 1324831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anti-inflammatory effects of erythromycin, clarithromycin, azithromycin and roxithromycin on histamine-induced otitis media with effusion in guinea pigs.
    Ersoy B; Aktan B; Kilic K; Sakat MS; Sipal S
    J Laryngol Otol; 2018 Jul; 132(7):579-583. PubMed ID: 29888693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro.
    Feldman C; Anderson R; Theron AJ; Ramafi G; Cole PJ; Wilson R
    Inflammation; 1997 Dec; 21(6):655-65. PubMed ID: 9429912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of macrolide antibiotics on nitric oxide synthase and xanthine oxidase activities, and malondialdehyde level in erythrocyte of the guinea pigs with experimental otitis media with effusion.
    Aktan B; Taysi S; Gümüştekin K; Uçüncü H; Memişoğullari R; Save K; Bakan N
    Pol J Pharmacol; 2003; 55(6):1105-10. PubMed ID: 14730107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of Streptococcus pyogenes to azithromycin, clarithromycin, erythromycin and roxithromycin in vitro.
    Van Asselt GJ; Sloos JH; Mouton RP; Van Boven CP; Van de Klundert JA
    J Med Microbiol; 1995 Nov; 43(5):386-91. PubMed ID: 7563004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of roxithromycin and clarithromycin with macrolide-inactivating enzymes from highly erythromycin-resistant Escherichia coli.
    O'Hara K; Yamamoto K
    Antimicrob Agents Chemother; 1996 Apr; 40(4):1036-8. PubMed ID: 8849224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of macrolides and ketolides with the phagocytic cell line PLB-985.
    Abdelghaffar H; Soukri A; Babin-Chevaye C; Labro MT
    J Chemother; 2003 Aug; 15(4):350-6. PubMed ID: 12962363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin.
    Vazifeh D; Abdelghaffar H; Labro MT
    Antimicrob Agents Chemother; 1997 Oct; 41(10):2099-107. PubMed ID: 9333032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens.
    Odenholt-Tornqvist I; Löwdin E; Cars O
    Antimicrob Agents Chemother; 1995 Jan; 39(1):221-6. PubMed ID: 7695310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-inflammatory activity of macrolide antibiotics.
    Ianaro A; Ialenti A; Maffia P; Sautebin L; Rombolà L; Carnuccio R; Iuvone T; D'Acquisto F; Di Rosa M
    J Pharmacol Exp Ther; 2000 Jan; 292(1):156-63. PubMed ID: 10604943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphonuclear leucocyte dysregulation in patients with gram-negative septicaemia assessed by flow cytometry.
    Wenisch C; Parschalk P; Hasenhündl M; Griesmacher A; Graninger W
    Eur J Clin Invest; 1995 Jun; 25(6):418-24. PubMed ID: 7656920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of azithromycin, clarithromycin, roxithromycin, dirithromycin, quinupristin/dalfopristin and erythromycin against Legionella species by intracellular susceptibility testing in HL-60 cells.
    Stout JE; Arnold B; Yu VL
    J Antimicrob Chemother; 1998 Feb; 41(2):289-91. PubMed ID: 9533475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility of penicillin-susceptible and -resistant pneumococci to dirithromycin compared with susceptibilities to erythromycin, azithromycin, clarithromycin, roxithromycin, and clindamycin.
    Visalli MA; Jacobs MR; Appelbaum PC
    Antimicrob Agents Chemother; 1997 Sep; 41(9):1867-70. PubMed ID: 9303375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to two ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampin and rifapentine).
    Hoppe JE; Bryskier A
    Antimicrob Agents Chemother; 1998 Apr; 42(4):965-6. PubMed ID: 9559823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria.
    Vaara M
    Antimicrob Agents Chemother; 1993 Feb; 37(2):354-6. PubMed ID: 8383945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild intraoperative hypothermia reduces production of reactive oxygen intermediates by polymorphonuclear leukocytes.
    Wenisch C; Narzt E; Sessler DI; Parschalk B; Lenhardt R; Kurz A; Graninger W
    Anesth Analg; 1996 Apr; 82(4):810-6. PubMed ID: 8615502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.