These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8878686)

  • 1. Large genetic change at small fitness cost in large populations of Drosophila melanogaster selected for wind tunnel flight: rethinking fitness surfaces.
    Weber KE
    Genetics; 1996 Sep; 144(1):205-13. PubMed ID: 8878686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polygenic mutation in Drosophila melanogaster: the causal relationship of bristle number to fitness.
    Nuzhdin SV; Fry JD; Mackay TF
    Genetics; 1995 Feb; 139(2):861-72. PubMed ID: 7713437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster.
    Latter BD
    Genetics; 1998 Mar; 148(3):1143-58. PubMed ID: 9539431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic divergence under uniform selection. II. Different responses to selection for knockdown resistance to ethanol among Drosophila melanogaster populations and their replicate lines.
    Cohan FM; Hoffmann AA
    Genetics; 1986 Sep; 114(1):145-64. PubMed ID: 3095180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic recombination and adaptation to fluctuating environments: selection for geotaxis in Drosophila melanogaster.
    Bourguet D; Gair J; Mattice M; Whitlock MC
    Heredity (Edinb); 2003 Jul; 91(1):78-84. PubMed ID: 12815456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modes of selection and recombination response in Drosophila melanogaster.
    Rodell CF; Schipper MR; Keenan DK
    J Hered; 2004; 95(1):70-5. PubMed ID: 14757732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the scutellar bristles of Drosophila melanogaster. II. Long-term selection for high bristle number in the Oregon RC strain and correlated responses in abdominal chaetae.
    Sheldon BL; Milton MK
    Genetics; 1972 Aug; 71(4):567-95. PubMed ID: 4626652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term selection for a quantitative character in large replicate populations of Drosophila melanogaster : Part 4: Relaxed and reverse selection.
    Yoo BH; Nicholas FW; Rathie KA
    Theor Appl Genet; 1980 May; 57(3):113-7. PubMed ID: 24302491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes.
    Weber KE; Diggins LT
    Genetics; 1990 Jul; 125(3):585-97. PubMed ID: 2116359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polygenic mutation in Drosophila melanogaster: genetic analysis of selection lines.
    Fry JD; deRonde KA; Mackay TF
    Genetics; 1995 Mar; 139(3):1293-307. PubMed ID: 7768439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of reduced pre-adult viability and larval growth rate in laboratory populations of Drosophila melanogaster selected for shorter development time.
    Prasad NG; Shakarad M; Gohil VM; Sheeba V; Rajamani M; Joshi A
    Genet Res; 2000 Dec; 76(3):249-59. PubMed ID: 11204972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster.
    Krebs RA; Thompson KA
    Genetica; 2006; 128(1-3):217-25. PubMed ID: 17028952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness.
    López MA; López-Fanjul C
    Genet Res; 1993 Apr; 61(2):117-26. PubMed ID: 8319901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerial performance of Drosophila melanogaster from populations selected for upwind flight ability.
    Marden JH; Wolf MR; Weber KE
    J Exp Biol; 1997 Nov; 200(Pt 21):2747-55. PubMed ID: 9418031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome interactions in Drosophila melanogaster. II. Total fitness.
    Seager RD; Ayala FJ; Marks RW
    Genetics; 1982 Nov; 102(3):485-502. PubMed ID: 6816676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased selection response in larger populations. I. Selection for wing-tip height in Drosophila melanogaster at three population sizes.
    Weber KE
    Genetics; 1990 Jul; 125(3):579-84. PubMed ID: 2116358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of fluctuating and directional asymmetry to selection on wing shape in Drosophila melanogaster.
    Pélabon C; Hansen TF; Carter AJ; Houle D
    J Evol Biol; 2006 May; 19(3):764-76. PubMed ID: 16674573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Adaptability of experimental populations of Drosophila melanogaster in directed and stabilizing selection].
    Lazebnyĭ OE; Imasheva AG; Zhivotovskiĭ LA
    Genetika; 1991 Oct; 27(10):1726-32. PubMed ID: 1778451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection.
    Shabalina SA; Yampolsky LYu ; Kondrashov AS
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13034-9. PubMed ID: 9371795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster.
    Latter BD; Mulley JC; Reid D; Pascoe L
    Genetics; 1995 Jan; 139(1):287-97. PubMed ID: 7705630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.