These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8878817)

  • 21. Antisense therapy in oncology: new hope for an old idea?
    Tamm I; Dörken B; Hartmann G
    Lancet; 2001 Aug; 358(9280):489-97. PubMed ID: 11513935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of Raf-1 kinase expression abolishes insulin stimulation of DNA synthesis in H4IIE hepatoma cells.
    Törnkvist A; Parpal S; Gustavsson J; Strålfors P
    J Biol Chem; 1994 May; 269(19):13919-21. PubMed ID: 8188671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antisense therapeutics.
    Crooke ST
    Biotechnol Genet Eng Rev; 1998; 15():121-57. PubMed ID: 9573607
    [No Abstract]   [Full Text] [Related]  

  • 24. Molecular mechanisms of antisense drugs: RNase H.
    Crooke ST
    Antisense Nucleic Acid Drug Dev; 1998 Apr; 8(2):133-4. PubMed ID: 9593052
    [No Abstract]   [Full Text] [Related]  

  • 25. A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer.
    Tolcher AW; Reyno L; Venner PM; Ernst SD; Moore M; Geary RS; Chi K; Hall S; Walsh W; Dorr A; Eisenhauer E
    Clin Cancer Res; 2002 Aug; 8(8):2530-5. PubMed ID: 12171880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular and cellular characterization of baboon C-Raf as a target for antiproliferative effects of antisense oligonucleotides.
    Mandiyan S; Schumacher C; Cioffi C; Sharif H; Yuryev A; Lappe R; Monia B; Hanson S; Goff S; Wennogle L
    Antisense Nucleic Acid Drug Dev; 1997 Dec; 7(6):539-48. PubMed ID: 9450911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antisense oligonucleotides as a tool for gene functionalization and target validation.
    Bennett CF; Cowsert LM
    Biochim Biophys Acta; 1999 Dec; 1489(1):19-30. PubMed ID: 10806994
    [No Abstract]   [Full Text] [Related]  

  • 28. RAF antisense oligonucleotide as a tumor radiosensitizer.
    Kasid U; Dritschilo A
    Oncogene; 2003 Sep; 22(37):5876-84. PubMed ID: 12947394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antisense oligonucleotides targeting protein kinase C-alpha, -beta I, or -delta but not -eta inhibit lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages: involvement of a nuclear factor kappa B-dependent mechanism.
    Chen CC; Wang JK; Lin SB
    J Immunol; 1998 Dec; 161(11):6206-14. PubMed ID: 9834107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antisense 2'-O-alkyl oligoribonucleotides are efficient inhibitors of reverse transcription.
    Boiziau C; Larrouy B; Sproat BS; Toulmé JJ
    Nucleic Acids Res; 1995 Jan; 23(1):64-71. PubMed ID: 7532858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic manipulation of protein kinase C in vivo.
    Toker A
    Methods Mol Biol; 2003; 233():475-89. PubMed ID: 12840530
    [No Abstract]   [Full Text] [Related]  

  • 32. Endothelial exposure to hypoxia induces Egr-1 expression involving PKCalpha-mediated Ras/Raf-1/ERK1/2 pathway.
    Lo LW; Cheng JJ; Chiu JJ; Wung BS; Liu YC; Wang DL
    J Cell Physiol; 2001 Sep; 188(3):304-12. PubMed ID: 11473356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antisense oligonucleotide-mediated inhibition of mutant p53 expression.
    Ruddell CJ; Green JA; Tidd DM
    Biochem Soc Trans; 1996 Aug; 24(3):410S. PubMed ID: 8878954
    [No Abstract]   [Full Text] [Related]  

  • 34. The activity of D-raf in torso signal transduction is altered by serine substitution, N-terminal deletion, and membrane targeting.
    Baek KH; Fabian JR; Sprenger F; Morrison DK; Ambrosio L
    Dev Biol; 1996 May; 175(2):191-204. PubMed ID: 8626025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence supporting a signal transduction pathway leading to the radiation-resistant phenotype in human tumor cells.
    Pirollo KF; Hao Z; Rait A; Ho CW; Chang EH
    Biochem Biophys Res Commun; 1997 Jan; 230(1):196-201. PubMed ID: 9020045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical studies of antisense oligonucleotides for cancer therapy.
    Orr RM; Dorr FA
    Methods Mol Med; 2005; 106():85-111. PubMed ID: 15375314
    [No Abstract]   [Full Text] [Related]  

  • 37. Raf-1 and ERK2 kinases are required for phorbol 12,13-dibutyrate-stimulated proliferation of rat lymphoblasts. ERK2 activation precedes Raf-1 hyperphosphorylation.
    Lisbona C; Alemany S; Calvo V; Fernandez-Renart M
    Eur J Immunol; 1994 Nov; 24(11):2746-54. PubMed ID: 7957567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blockage of NF-kappa B signaling by selective ablation of an mRNA target by 2-5A antisense chimeras.
    Maran A; Maitra RK; Kumar A; Dong B; Xiao W; Li G; Williams BR; Torrence PF; Silverman RH
    Science; 1994 Aug; 265(5173):789-92. PubMed ID: 7914032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: implications for the antiproliferative effects of antiestrogens.
    Carroll JS; Swarbrick A; Musgrove EA; Sutherland RL
    Cancer Res; 2002 Jun; 62(11):3126-31. PubMed ID: 12036924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events.
    Hambleton J; McMahon M; DeFranco AL
    J Exp Med; 1995 Jul; 182(1):147-54. PubMed ID: 7790814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.