BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 8879247)

  • 21. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12.
    Sprenger GA
    Arch Microbiol; 1995 Nov; 164(5):324-30. PubMed ID: 8572885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular analysis of the structural gene for yeast transaldolase.
    Schaaff I; Hohmann S; Zimmermann FK
    Eur J Biochem; 1990 Mar; 188(3):597-603. PubMed ID: 2185015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease.
    Igoillo-Esteve M; Maugeri D; Stern AL; Beluardi P; Cazzulo JJ
    An Acad Bras Cienc; 2007 Dec; 79(4):649-63. PubMed ID: 18066434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production.
    Larochelle M; Drouin S; Robert F; Turcotte B
    Mol Cell Biol; 2006 Sep; 26(17):6690-701. PubMed ID: 16914749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired growth of an Escherichia coli rpe mutant lacking ribulose-5-phosphate epimerase activity.
    Lyngstadaas A; Sprenger GA; Boye E
    Biochim Biophys Acta; 1998 Aug; 1381(3):319-30. PubMed ID: 9729441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response.
    Fahrendorf T; Ni W; Shorrosh BS; Dixon RA
    Plant Mol Biol; 1995 Aug; 28(5):885-900. PubMed ID: 7640360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning of the amphibolic Calvin cycle/OPPP enzyme D-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1) from spinach chloroplasts: functional and evolutionary aspects.
    Nowitzki U; Wyrich R; Westhoff P; Henze K; Schnarrenberger C; Martin W
    Plant Mol Biol; 1995 Dec; 29(6):1279-91. PubMed ID: 8616224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of a genomic library of the food spoilage yeast Zygosaccharomyces bailii and isolation of the beta-isopropylmalate dehydrogenase gene (ZbLEU2).
    Rodrigues F; Zeeman AM; Alves C; Sousa MJ; Steensma HY; Côrte-Real M; Leão C
    FEMS Yeast Res; 2001 Apr; 1(1):67-71. PubMed ID: 12702464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase.
    Nogae I; Johnston M
    Gene; 1990 Dec; 96(2):161-9. PubMed ID: 2269430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis.
    Matsufuji Y; Fujimura S; Ito T; Nishizawa M; Miyaji T; Nakagawa J; Ohyama T; Tomizuka N; Nakagawa T
    Yeast; 2008 Nov; 25(11):825-33. PubMed ID: 19061187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pentose phosphate pathway in Trypanosoma cruzi.
    Maugeri DA; Cazzulo JJ
    FEMS Microbiol Lett; 2004 May; 234(1):117-23. PubMed ID: 15109729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae.
    Coleman ST; Fang TK; Rovinsky SA; Turano FJ; Moye-Rowley WS
    J Biol Chem; 2001 Jan; 276(1):244-50. PubMed ID: 11031268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pentose phosphate pathway in the endoplasmic reticulum.
    Bublitz C; Steavenson S
    J Biol Chem; 1988 Sep; 263(26):12849-53. PubMed ID: 2843500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway.
    Dickinson JR; Sobanski MA; Hewlins MJ
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():385-91. PubMed ID: 7704269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes.
    Thorpe GW; Fong CS; Alic N; Higgins VJ; Dawes IW
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6564-9. PubMed ID: 15087496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transaldolase of Methanocaldococcus jannaschii.
    Soderberg T; Alver RC
    Archaea; 2004 Oct; 1(4):255-62. PubMed ID: 15810435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme.
    Lamb HK; Moore JD; Lakey JH; Levett LJ; Wheeler KA; Lago H; Coggins JR; Hawkins AR
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):941-50. PubMed ID: 8611179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Cloning and expression of arom gene of Sclerotinia sclerotiorum].
    Yu HY; Yang Q
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):43-7. PubMed ID: 16579463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.