These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 8879409)
21. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Wouters JA; Frenkiel H; de Vos WM; Kuipers OP; Abee T Appl Environ Microbiol; 2001 Nov; 67(11):5171-8. PubMed ID: 11679342 [TBL] [Abstract][Full Text] [Related]
22. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Rezaïki L; Cesselin B; Yamamoto Y; Vido K; van West E; Gaudu P; Gruss A Mol Microbiol; 2004 Sep; 53(5):1331-42. PubMed ID: 15387813 [TBL] [Abstract][Full Text] [Related]
23. Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Wu H; Liu J; Miao S; Zhao Y; Zhu H; Qiao M; Saris PEJ; Qiao J Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305506 [TBL] [Abstract][Full Text] [Related]
24. Effects of metabolic flux on stress response pathways in Lactococcus lactis. Duwat P; Ehrlich SD; Gruss A Mol Microbiol; 1999 Feb; 31(3):845-58. PubMed ID: 10048028 [TBL] [Abstract][Full Text] [Related]
25. Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Wouters JA; Jeynov B; Rombouts FM; de Vos WM; Kuipers OP; Abee T Microbiology (Reading); 1999 Nov; 145 ( Pt 11)():3185-3194. PubMed ID: 10589727 [TBL] [Abstract][Full Text] [Related]
26. Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH. Budin-Verneuil A; Maguin E; Auffray Y; Ehrlich SD; Pichereau V FEMS Microbiol Lett; 2005 Sep; 250(2):189-94. PubMed ID: 16098686 [TBL] [Abstract][Full Text] [Related]
27. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. Weidmann S; Maitre M; Laurent J; Coucheney F; Rieu A; Guzzo J Int J Food Microbiol; 2017 Apr; 247():18-23. PubMed ID: 27318622 [TBL] [Abstract][Full Text] [Related]
28. Stress response kinetics of two nisin producer strains of Lactococcus lactis spp. lactis. Simşek O; Buzrul S; Akkoç N; Alpas H; Akçelik M Appl Biochem Biotechnol; 2009 Aug; 158(2):387-97. PubMed ID: 18769876 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential. Larsen N; Moslehi-Jenabian S; Werner BB; Jensen ML; Garrigues C; Vogensen FK; Jespersen L Int J Food Microbiol; 2016 Jun; 226():5-12. PubMed ID: 27015296 [TBL] [Abstract][Full Text] [Related]
30. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses. Zhang M; Chen J; Zhang J; Du G J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress. Díez L; Solopova A; Fernández-Pérez R; González M; Tenorio C; Kuipers OP; Ruiz-Larrea F Int J Food Microbiol; 2017 Sep; 257():41-48. PubMed ID: 28644989 [TBL] [Abstract][Full Text] [Related]
32. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. Zhu Z; Ji X; Wu Z; Zhang J; Du G J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1091-1101. PubMed ID: 30232653 [TBL] [Abstract][Full Text] [Related]
33. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. Hagi T; Kobayashi M; Kawamoto S; Shima J; Nomura M J Appl Microbiol; 2013 Jun; 114(6):1763-71. PubMed ID: 23473548 [TBL] [Abstract][Full Text] [Related]
35. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris. To TM; Grandvalet C; Tourdot-Maréchal R Appl Environ Microbiol; 2011 May; 77(10):3327-34. PubMed ID: 21421775 [TBL] [Abstract][Full Text] [Related]
36. Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors. Ho CH; Stanton-Cook M; Beatson SA; Bansal N; Turner MS Int J Food Microbiol; 2016 Mar; 220():26-32. PubMed ID: 26773254 [TBL] [Abstract][Full Text] [Related]
37. The influence of adaptive stresses on the survival of spray-dried Cnossen DC; Rodrigues RC; Martins E; Junior JCC; Carvalho AF J Dairy Res; 2020 Aug; 87(3):382-385. PubMed ID: 32883380 [TBL] [Abstract][Full Text] [Related]
38. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44. Qi J; Caiyin Q; Wu H; Tian K; Wang B; Li Y; Qiao J Appl Microbiol Biotechnol; 2017 Aug; 101(16):6483-6493. PubMed ID: 28689267 [TBL] [Abstract][Full Text] [Related]
39. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth. Smith WM; Pham TH; Lei L; Dou J; Soomro AH; Beatson SA; Dykes GA; Turner MS Appl Environ Microbiol; 2012 Nov; 78(21):7753-9. PubMed ID: 22923415 [TBL] [Abstract][Full Text] [Related]
40. Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Budin-Verneuil A; Pichereau V; Auffray Y; Ehrlich DS; Maguin E Proteomics; 2005 Dec; 5(18):4794-807. PubMed ID: 16237734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]