BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 8879410)

  • 1. Physiology of pyruvate metabolism in Lactococcus lactis.
    Cocaign-Bousquet M; Garrigues C; Loubiere P; Lindley ND
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):253-67. PubMed ID: 8879410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of pyruvate metabolism in Lactococcus lactis.
    Melchiorsen CR; Jensen NB; Christensen B; Vaever Jokumsen K; Villadsen J
    Biotechnol Bioeng; 2001 Aug; 74(4):271-9. PubMed ID: 11410851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.
    Oh E; Lu M; Park C; Park C; Oh HB; Lee SY; Lee J
    J Microbiol Biotechnol; 2011 Feb; 21(2):162-9. PubMed ID: 21364298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose.
    Solem C; Koebmann B; Yang F; Jensen PR
    J Bacteriol; 2007 Sep; 189(18):6727-30. PubMed ID: 17616595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity.
    Even S; Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    Metab Eng; 1999 Jul; 1(3):198-205. PubMed ID: 10937934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 10. Integrated metabonomic-proteomic analysis reveals the effect of glucose stress on metabolic adaptation of Lactococcus lactis ssp. lactis CICC23200.
    Qi W; Li XX; Guo YH; Bao YZ; Wang N; Luo XG; Yu CD; Zhang TC
    J Dairy Sci; 2020 Sep; 103(9):7834-7850. PubMed ID: 32684472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions.
    Lopez de Felipe F; Hugenholtz J
    FEMS Microbiol Lett; 1999 Oct; 179(2):461-6. PubMed ID: 10518751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways.
    Novák L; Loubiere P
    J Bacteriol; 2000 Feb; 182(4):1136-43. PubMed ID: 10648541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.
    Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P
    Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiamine-Starved
    Zhao S; Solem C
    J Agric Food Chem; 2024 Mar; 72(9):4858-4868. PubMed ID: 38377583
    [No Abstract]   [Full Text] [Related]  

  • 16. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering.
    Hols P; Kleerebezem M; Schanck AN; Ferain T; Hugenholtz J; Delcour J; de Vos WM
    Nat Biotechnol; 1999 Jun; 17(6):588-92. PubMed ID: 10385325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325].
    Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect?
    Goel A; Eckhardt TH; Puri P; de Jong A; Branco Dos Santos F; Giera M; Fusetti F; de Vos WM; Kok J; Poolman B; Molenaar D; Kuipers OP; Teusink B
    Mol Microbiol; 2015 Jul; 97(1):77-92. PubMed ID: 25828364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.