These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8879519)

  • 1. New polyurethane compositions able to bond high amounts of both albumin and heparin. II: Copolymers and polymer blends.
    Marconi W; Galloppa A; Martinelli A; Piozzi A
    Biomaterials; 1996 Sep; 17(18):1795-802. PubMed ID: 8879519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New polyurethane compositions able to bond high amounts of both albumin and heparin. Part I.
    Marconi W; Galloppa A; Martinelli A; Piozzi A
    Biomaterials; 1995 Apr; 16(6):449-56. PubMed ID: 7654871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and physicochemical characterization of a hydrophilic polyurethane able to bind heparin.
    Marconi W; Martinelli A; Piozzi A; Zane D
    Biomaterials; 1992; 13(7):432-8. PubMed ID: 1633217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of novel polyurethane cationomers with dipeptide sequences and alkylammonium groups.
    Buruiana EC; Buruiana T
    J Biomater Sci Polym Ed; 2004; 15(6):781-95. PubMed ID: 15255526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of alkyl grafted polyurethane block copolymers by variable takeoff angle x-ray photoelectron spectroscopy.
    Grasel TG; Castner DG; Ratner BD; Cooper SL
    J Biomed Mater Res; 1990 May; 24(5):605-20. PubMed ID: 2324130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alkyl grafting on surface properties and blood compatibility of polyurethane block copolymers.
    Grasel TG; Pierce JA; Cooper SL
    J Biomed Mater Res; 1987 Jul; 21(7):815-42. PubMed ID: 3611144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood compatible phospholipid-containing polyurethanes: synthesis characterization and blood compatibility evaluation.
    Li YJ; Nakaya T; Zhang Z; Kodama M
    J Biomater Appl; 1997 Oct; 12(2):167-91. PubMed ID: 9399140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and interactions with blood of polyetherurethaneurea/polypeptide block copolymers.
    Ito Y; Miyashita K; Kashiwagi T; Imanishi Y
    Biomater Artif Cells Immobilization Biotechnol; 1993; 21(4):571-80. PubMed ID: 8260582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation of human plasma proteins at polymer surfaces: the effectiveness of surface heparinization.
    Barbucci R; Magnani A
    Biomaterials; 1994 Oct; 15(12):955-62. PubMed ID: 7841293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Albumin adsorption on alkyl chain derivatized polyurethanes. II. The effect of alkyl chain length.
    Pitt WG; Grasel TG; Cooper SL
    Biomaterials; 1988 Jan; 9(1):36-46. PubMed ID: 3349120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface functionalization and grafting of heparin and/or RGD by an aqueous-based process to a poly(carbonate-urea)urethane cardiovascular graft for cellular engineering applications.
    Salacinski HJ; Hamilton G; Seifalian AM
    J Biomed Mater Res A; 2003 Sep; 66(3):688-97. PubMed ID: 12918053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties.
    Ishihara K; Hanyuda H; Nakabayashi N
    Biomaterials; 1995 Jul; 16(11):873-9. PubMed ID: 8527604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro platelet adhesion and in vivo antithrombogenicity of heparinized polyetherurethaneureas.
    Ito Y; Imanishi Y; Sisido M
    Biomaterials; 1988 May; 9(3):235-40. PubMed ID: 3408794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility.
    Tan D; Zhang X; Li J; Tan H; Fu Q
    J Biomed Mater Res A; 2012 Feb; 100(2):380-7. PubMed ID: 22083794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel poly(urethane-aminoamides): an in vitro study of the interaction with heparin.
    Petrini P; Tanzi MC; Visai L; Casolini F; Speziale P
    J Biomater Sci Polym Ed; 2000; 11(4):353-65. PubMed ID: 10903035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes.
    Chen KY; Kuo JF; Chen CY
    Biomaterials; 2000 Jan; 21(2):161-71. PubMed ID: 10632398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparinizable segmented polyurethanes containing poly-amidoamine blocks.
    Tanzi MC; Levi M
    J Biomed Mater Res; 1989 Aug; 23(8):863-81. PubMed ID: 2777830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.